Skip to main content
Log in

Plasticity, Mineralogy, and WRB Classification of Some Typical Clay Soils along the Two Major Rivers in Croatia

  • SOIL PHYSICS
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Quantification of soil plasticity is usually based on Atterberg limits or indices, which are then used for engineering and agricultural purposes on clay soils. Because these limits/indices are seldom analyzed during routine soil surveys, they are sometimes estimated from available soil properties using pedotransfer functions (PTFs). Main aim of this study was to test if two robust PTFs, previously created by other authors for other soils/areas, may be used for predicting plasticity of typical clay soils on fluvial deposits in Croatia. We analyzed mineralogy, plasticity, and related physicochemical properties of four representative soil profiles along Sava and Drava, two longest Croatian rivers. Particle size distribution patterns pointed to more uniform sedimentation along Sava, compared to Drava. Also, more clay was found within Sava profiles. Soil texture was finer farther away from the sources of both rivers. Soil cation exchange capacity (CEC) was almost fully positively correlated to clay content. On the other hand, Corg content showed no correlation to CEC. This is attributed to the significant presence of smectite across all studied soils. Clay was recognized as the main factor influencing soil plasticity. When compared to the measured values, the predicted values of plasticity index and liquid limit were heavily underestimated. Hence, region-specific PTFs should be developed for more accurate prediction of plasticity in these soils. According to the WRB-2015, the soils were classified as Eutric Reductigleyic Stagnic Gleysols (Clayic, Humic, Protovertic). Because soils were not dry during field description, shrink-swell cracks were not prominent, and therefore soils were not classified as Vertisols. We suggest that field criteria for classification of Vertisols should not depend on actual soil moisture. Instead, plastic limits/indices could be used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. N. Ahmad, “Vertisols,” in Pedogenesis and Soil Taxonomy, Vol. 2: The Soil Orders, Ed. by L. P. Wilding, et al. (Elsevier, Amsterdam, 1983), Ch. 3, pp. 91–123.

  2. A. Ahmadi, E. Talaie, and R. Soukoti, “Pedotransfer functions for estimating Atterberg limits in semi-arid areas,” Int. J. Agric.: Res. Rev. 2 (4), 491–495 (2012).

    Google Scholar 

  3. L. Ammann, F. Bergaya, and G. Lagaly, “Determination of the cation exchange capacity of clays with copper complexes revisited,” Clay Miner. 40, 441–453 (2005). https://doi.org/10.1180/0009855054040182

    Article  Google Scholar 

  4. F. A. Andrade, H. A. Al-Qureshi, and D. Hotza, “Measuring the plasticity of clays: a review,” Appl. Clay Sci. 51, 1–7 (2011). https://doi.org/10.1016/j.clay.2010.10.028

    Article  Google Scholar 

  5. ASTM D4318-10: Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (ASTM International, West Conshohocken, PA, 2010).

  6. A. Atterberg, “Die plastizität der tone,” Int. Mitt. Bodenkd. 1, 10–43 (1911).

    Google Scholar 

  7. F. Bašić, M. Bogunović, M. Božić, S. Husnjak, I. Jurić, I. Kisić, I. Mesić, N. Mirošević, D. Romić, and I. Žugec, Regionalizacija Hrvatske Poljoprivrede (Agronomski Fakultet Zagreb, Zagreb, 2001)

    Google Scholar 

  8. W. A. Blokhuis, “Morphology and genesis of Vertisols,” in Proceedings of the 12th International Congress of Soil Science “Vertisols and Rice Soils of the Tropics” (New Delhi, 1982), pp. 23–47.

  9. M. Bogunović, Ž. Vidaček, S. Husnjak, and M. Sraka, “Inventory of soils in Croatia,” Agric. Conspectus Sci. 63 (3), 105–112 (1998).

    Google Scholar 

  10. J. Bouma, “Using soil survey data for quantitative land evaluation,” Adv. Soil Sci. 9, 177–213 (1989).

    Article  Google Scholar 

  11. G. W. Brindley and G. Brown, Crystal Structures of Clay Minerals and their X-Ray Identification (Mineralogical Society, London, 1980).

    Book  Google Scholar 

  12. P. Charzyński, R. Bednarek, P. Hudańska, and M. Świtoniak, “Issues related to classification of garden soils from the urban area of Toruń, Poland,” Soil Sci. Plant Nutr. 64 (2), 132–137 (2018). https://doi.org/10.1080/00380768.2018.1429833

    Article  Google Scholar 

  13. R. A. Dahlgren, J. L. Boettinger, G. L. Huntington, and R. G. Amundson, “Soil development along an elevational transect in the western Sierra Nevada, California,” Geoderma 78, 207–236 (1997). https://doi.org/10.1016/S0016-7061(97)00034-7

    Article  Google Scholar 

  14. C. Dazzi, G. L. Papa, and V. Palermo, “Proposal for a new diagnostic horizon for WRB Anthrosols,” Geoderma 151, 16–21 (2009). https://doi.org/10.1016/j.geoderma.2009.03.013

    Article  Google Scholar 

  15. E. De Jong, D. F. Acton, and H. B. Stonehouse, “Estimating the Atterberg limits of southern Saskatchewan soils from texture and carbon contents,” Can. J. Soil Sci. 70 (4), 543–554 (1990). https://doi.org/10.4141/cjss90-057

    Article  Google Scholar 

  16. D. De La Rosa, “Relation of several pedological characteristics to engineering qualities of soil,” Eur. J. Soil Sci. 30, 793–799 (1979). https://doi.org/10.1111/j.1365-2389.1979.tb01028.x

    Article  Google Scholar 

  17. B. De Vos, M. van Meirvenne, P. Quataert, J. Deckers, and B. Muys, “Predictive quality of pedotransfer functions for estimating bulk density of forest soils,” Soil Sci. Soc. Am. J. 69 (2), 500–510 (2005). https://doi.org/10.2136/sssaj2005.0500

    Article  Google Scholar 

  18. A. R. Dexter, G. Richard, D. Arrouays, E. A. Czyż, C. Jolivet, and O. Duval, “Complexed organic matter controls soil physical properties,” Geoderma 144, 620–627 (2008). https://doi.org/10.1016/j.geoderma.2008.01.022

    Article  Google Scholar 

  19. I. Esfandiarpour, M. H. Salehi, A. R. Karimi, and A. Kamali, “Correlation between Soil Taxonomy and World Reference Base for Soil Resources in classifying calcareous soils: (A case study of arid and semi-arid regions of Iran),” Geoderma 197–198, 126–136 (2013). https://doi.org/10.1016/j.geoderma.2013.01.002

    Article  Google Scholar 

  20. Guidelines for Soil Description, 4th ed. (Food and Agriculture Organization of the United Nations, Rome, 2006)

  21. M. Gajić-Čapka, K. Cindrić, and D. Mihajlović, “Oborina,” in Klimatski atlas Hrvatske: 1961–1990, 1971–2000, Ed. by K. Zaninović, (Državni Hidrometeorološki Zavod, Zagreb, 2008), pp. 43–51.

    Google Scholar 

  22. M. Gajić-Čapka and K. Zaninović, “Klima Hrvatske,” in Klimatski atlas Hrvatske: 1961–1990, 1971–2000, Ed. by K. Zaninović, (Državni Hidrometeorološki Zavod, Zagreb, 2008), pp. 13–17.

    Google Scholar 

  23. E. Grim, Clay Mineralogy, 2nd ed. (McGraw Hill, New York, 1968), pp. 31–125.

    Google Scholar 

  24. F. Haghighi, M. Gorji, and M. Shorafa, “A study of the effects of land use changes on soil physical properties and organic matter,” Land Degrad. Dev. 21 (5), 496–502 (2010). https://doi.org/10.1002/ldr.999

    Article  Google Scholar 

  25. I. Hećimović, “Kvartar. Kenozoik,” in Tumač Geološke Karte Republike Hrvatske 1 : 300 000, Ed. by I. Velić and I. Vlahović (Hrvatski Geološki Institut, Zagreb, 2009), pp. 95–101.

    Google Scholar 

  26. ISO 10693:1995: Soil Quality—Determination of Carbonate Content—Volumetric Method (International Organization for Standardization, Geneva, 1995)

  27. ISO 10390:2005: Soil Quality—Determination of pH (International Organization for Standardization, Geneva, 2005)

  28. ISO 11464:2006: Soil Quality—Pretreatment of Samples for Physico-Chemical Analysis (International Organization for Standardization, Geneva, 2006)

  29. S. Husnjak, “Pedofizikalna i pedomehanička svojstva hidromelioriranih tala Srednje Posavine,” Agron. Glas. 62 (3–4), 99–112 (2000)

    Google Scholar 

  30. S. Husnjak, Sistematika Tala Hrvatske (Hrvatska Sveučilišna Naklada, Zagreb, 2014).

    Google Scholar 

  31. S. Husnjak, V. Rubinić, B. Vrbek, and A. Špoljar, “S-vjetska referentna osnovica za tlo (WRB) s primjerima korištenja u Hrvatskoj,” Agron. Glas. 5–6, 347–366 (2009).

    Google Scholar 

  32. IUSS Working Group WRB, World Reference Base for Soil Resources 2014, Update 2015, International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, World Soil Resources Reports No. 106 (Food and Agriculture Organization of the United Nations, Rome, 2015).

  33. Priručnik za Ispitivanje Zemljišta Book 1: Kemijske Metode Ispitivanja Zemljišta (Jugoslovensko Društvo za Proučavanje Zemljišta, Beograd, 1966).

  34. T. Keller and A. R., Dexter, “Plastic limits of agricultural soils as functions of soil texture and organic matter content,” Soil Res. 50 (1), 7–17 (2012). https://doi.org/10.1071/SR11174

    Article  Google Scholar 

  35. N. B. Khitrov and L. V. Rogovneva, “Vertisols and vertic soils of the Middle and Lower Volga regions,” Eurasian Soil Sci. 47, 1167–1186 (2014). https://doi.org/10.1134/S1064229314090063

    Article  Google Scholar 

  36. N. B. Khitrov and L. V. Rogovneva, “Particle-size distribution patterns in vertisols and vertic soils of Russia,” Eurasian Soil Sci. 50, 312–326 (2017). https://doi.org/10.1134/S1064229317030061

    Article  Google Scholar 

  37. P. A. Matson, W. J. Parton, A. G. Power, and M. S. Swift, “Agricultural intensification and ecosystem properties,” Science 277 (5325), 504–509 (1997). https://doi.org/10.1126/science.277.5325.504

    Article  Google Scholar 

  38. J. S. C. Mbagwu and O. G. Abeh, “Prediction of engineering properties of tropic soils using intrinsic pedological parameters,” Soil Sci. 163 (2), 93–102 (1998). https://doi.org/10.1097/00010694-199802000-00002

    Article  Google Scholar 

  39. R. A. McBride, “Atterberg limits,” in Methods of Soil Analysis, Part 4: Physical Methods, SSSA Book Series no. 5, Ed. by J. H. Dane and G. C. Topp (Soil Science Society of America, Madison, WI, 2002), pp. 389–398

  40. L. P. Meier and G. Kahr, “Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper (II) ion with triethylenetetramine and tetraethylenepentamine,” Clays Clay Miner. 47 (3), 386–388 (1999). https://doi.org/10.1346/CCMN.1999.0470315

    Article  Google Scholar 

  41. J. K. Mitchell, Fundamentals of Soil Behavior 2nd ed. (Wiley, New York, 1993).

    Google Scholar 

  42. D. M. Moore and R. C. Reynolds, X-Ray Diffraction and the Identification and Analysis of Clay Minerals, 2nd ed. (Oxford University Press, Oxford, 1997).

    Google Scholar 

  43. R. T. Odell, I. H. Thornburn, and L. J. McKenzie, “Relationships of Atterberg limits to some other properties of Illinois soils,” Soil Sci. Soc. Am. J. 24 (4) 297–300 (1960). https://doi.org/10.2136/sssaj1960.03615995002400040025x

    Article  Google Scholar 

  44. D. K. Pal, T. Bhattacharyya, P. Chandran, S. K. Ray, P. L. A. Satyavathi, S. L. Durge, P. Raja, and U. K. Maurya, “Vertisols (cracking clay soils) in a climosequence of Peninsular India: evidence for Holocene climate changes,” Quat. Int. 209 (1), 6–21 (2009). https://doi.org/10.1016/j.quaint.2008.12.013

    Article  Google Scholar 

  45. D. K. Pal, S. P. Wani, and K. L. Sahrawat, “Vertisols of tropical Indian environments: Pedology and edaphology,” Geoderma 189–190, 28–49 (2012). https://doi.org/10.1016/j.geoderma.2012.04.021

    Article  Google Scholar 

  46. R. B. Parsons, L. Moncharoan, and E. G. Knox, “Geomorphic occurrence of Pelloxererts, Wilamette Valley, Oregon,” Soil Sci. Soc. Am. J. 37 (6), 924–927 (1973). https://doi.org/10.2136/sssaj1973.03615995003700060036x

    Article  Google Scholar 

  47. W. W. Perkins, Ceramic Glossary (American Ceramic Society, Columbus, OH, 1995)

    Google Scholar 

  48. G. Pineiro, S. Perelman, J. P. Guerschman, and J. M. Paruelo, “How to evaluate models: observed vs. predicted or predicted vs. observed?” Ecol. Model. 216 (3–4), 316–322 (2008) https://doi.org/10.1016/j.ecolmodel.2008.05.006

    Article  Google Scholar 

  49. T. Poršinsky, M. Sraka, and I. Stankić, “Comparison of two approaches to soil strength classifications,” Croat. J. For. Eng. 27 (1), 17–26 (2006)

    Google Scholar 

  50. T. Rennert, A. Georgiadis, N. P. Ghong, and J. Rinklebe, “Compositional variety of soil organic matter in mollic floodplain-soil profiles—Also an indicator of pedogenesis,” Geoderma 311, 15–24 (2018). https://doi.org/10.1016/j.geoderma.2017.09.039

    Article  Google Scholar 

  51. J. Roglić, “Reljef. Obilježja prirodne osnove,” in Geografija SR Hrvatske, Book 1: Središnja Hrvatska. Opći Dio, Ed. by I. Crkvenčić, et al. (Školska Knjiga, Zagreb, 1974), pp. 44–92.

  52. J. Roglić, “Reljef. Prirodna obilježja,” in Geografija SR Hrvatske, Book 3: Istočna Hrvatska, Ed. by I. Crkvenčić, et al. (Školska Knjiga, Zagreb, 1975), pp. 17–45.

  53. M. H. Salehi, “Challenges of soil taxonomy and WRB in classifying soils: some examples from Iranian soils,” Bull. Geogr. Phys. Geogr. Ser. 14, 63–70 (2018). https://doi.org/10.2478/bgeo-2018-0005

    Article  Google Scholar 

  54. C. A. Seybold, M. A. Elrashidi, and R. J. Engel, “Linear regression models to estimate soil liquid limit and plasticity index from basic soil properties,” Soil Sci. 173 (1), 25–34 (2008) https://doi.org/10.1097/ss.06013e318159a5e1

    Article  Google Scholar 

  55. C. W. Smith, A. Hadas, J. Dan, and H. Koyuindjiskv, “Shrinkage and Atterberg limits in relation to other properties of principal soil types in Israel,” Geoderma 35, 47–65 (1985)

    Article  Google Scholar 

  56. A. Škorić, G. Filipovski, and M. Ćirić, Klasifikacija Zemljišta Jugoslavije (Akademija Nauka i Umjetnosti Bosne i Hercegovine, Sarajevo, 1985)

    Google Scholar 

  57. A. T. Urushadze, N. P. Chizhikova, and T. F. Urushadze, “Mineralogical composition of the clay fraction in alluvial soils of Eastern Georgia,“ Eurasian Soil Sci. 39, 516–527 (2006). https://doi.org/10.1134/S1064229306050097

    Article  Google Scholar 

  58. J. J. van Tol, A. R. Dzene, P. A. L. Le Roux, and R. Schall, “Pedotransfer functions to predict Atterberg limits for South African soils using measured and morphological properties,” Soil Use Manage. 32, 635–643 (2016). https://doi.org/10.1111/sum.12303

    Article  Google Scholar 

  59. B. Velde and A. Meunier, The Origin of Clay Minerals in Soils and Weathered Rocks (Springer-Verlag, Berlin, 2008).

    Book  Google Scholar 

  60. B. Wagner, V. R. Tarnawski, V. Hennigs, U. Muller, G. Wessolek, and R. Plagge, “Evaluation of pedotransfer functions for unsaturated soil hydraulic conductivity using an independent data set,” Geoderma 102, 275–297 (2001). https://doi.org/10.1016/S0016-7061(01)00037-4

    Article  Google Scholar 

  61. W. R. Wright and J. E. Foss, “Contributions of clay and organic matter to the cation exchange capacity of Maryland soils,” Soil Sci. Soc. Am. J. 36 (1), 115–118 (1972). https://doi.org/10.2136/sssaj1972.03615995003600010027x

    Article  Google Scholar 

  62. I. Yilmaz, “Relationship between liquid limit, cation exchange capacity and swelling potential of clayey soils,” Eurasian Soil Sci. 37, 506–512 (2004)

    Google Scholar 

  63. K. Zaninović, “Temperatura zraka,” in Klimatski atlas Hrvatske: 1961–1990, 1971–2000, Ed. by K. Zaninović, (Državni Hidrometeorološki Zavod, 2008), pp. 27–33.

    Google Scholar 

  64. V. Zebec, Z. Semialjac, M. Marković, V. Tadić, D. Radić, and D. Rastija, “Utjecaj fizikalnih i kemijskih svojstava različitih tipova tla na optimalno stanje vlažnosti za obradu,” Poljoprivreda 23 (2) 10–18 (2017). https://doi.org/10.1847/poljo.23.2.2

    Article  Google Scholar 

  65. C. Zielhofer, J. M. Recio Espejo, M. À. Núnez Granados, and D. Faust, “Durations of soil formation and soil development indices in a Holocene Mediterranean floodplain,” Quat. Int. 209 (1–2), 44–65 (2009). https://doi.org/10.1016/j.quaint.2009.02.023

    Article  Google Scholar 

  66. Z. Zolfaghari, M. R. Mosaddeghi, and S. Ayoubi, “ANN-based pedotransfer and soil spatial prediction functions for predicting Atterberg consistency limits and indices from easily available properties at watershed scale in western Iran,” Soil Use Manage. 31, 142–154 (2015). https://doi.org/10.1111/sum.12167

    Article  Google Scholar 

Download references

Funding

The study was funded by the University of Zagreb, within the project “Possibilities of using pedotransfer functions for clay hydromorphic soils in Croatia” (Translated from Croatian).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bensa.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rubinić, V., Ilijanić, N., Magdić, I. et al. Plasticity, Mineralogy, and WRB Classification of Some Typical Clay Soils along the Two Major Rivers in Croatia. Eurasian Soil Sc. 53, 922–940 (2020). https://doi.org/10.1134/S1064229320070121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229320070121

Keywords:

Navigation