Skip to main content
Log in

Stability and morphological and molecular-genetic identification of algae in buried soils

  • Soil Biology
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Living cultural strains of the green algae ‘Chlorella’ mirabilis and Muriella terrestris have been isolated from buried soils, and their identification has been confirmed by morphological and molecular-genetic analysis. It has been shown that the retention of their viability could be related to their small size and the presence of sporopollenin in cell walls. The effect of methods for the reactivation of dormant microbial forms on the growth of algae in paleosols has been estimated. The total DNA content has been determined in buried and recent background soils, and relationship between DNA and the presence and age of burial has been established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. M. Alifanov, L. A. Gugalinskaya, and A. Yu. Ovchinnikov, “The formation of parent materials of the Holocene soils in the center of the East European Plain,” Probl. Reg. Ekol., No. 4, 55–59 (2015).

    Google Scholar 

  2. V. M. Andreeva, Soil and Aerophilic Green Algae (Chlorophyta: Tetrasporales, Chlorococcales, and Chlorosarcinales) (Nauka, St. Petersburg, 1998) [in Russian].

    Google Scholar 

  3. E. V. Arinushkina, Handbook on the Chemical Analysis of Soils (Moscow State Univ., Moscow, 1961) [in Russian].

    Google Scholar 

  4. A. G. Blagodatnova, “Cyanobacterial–algal cenoses as the reflection of paleoecological features of Holocene soils,” Vestn. Novosibirsk. Gos. Pedagog. Univ., No. 2 (18), 163–169 (2014).

    Article  Google Scholar 

  5. T. S. Demkina, A. V. Borisov, and V. A. Demkin, “Microbiological study of paleosols buried under kurgans in the desert-steppe zone of the Volga–Don interfluve,” Eurasian Soil Sci. 37, 743–748 (2004).

    Google Scholar 

  6. T. S. Demkina, A. V. Borisov, and V. A. Demkin, “Microbial communities in the paleosols of archeological monuments in the desert-steppe,” Eurasian Soil Sci. 33, 978–986 (2000).

    Google Scholar 

  7. T. S. Demkina, T. E. Khomutova, N. N. Kashirskaya, I. V. Stretovich, and V. A. Demkin, “Microbiological investigations of paleosols of archeological monuments in the steppe zone,” Eurasian Soil Sci. 43, 194–201 (2010).

    Article  Google Scholar 

  8. T. S. Demkina, T. E. Khomutova, N. N. Kashirskaya, I. V. Stretovich, and V. A. Demkin, “Characteristics of microbial communities in steppe paleosols buried under kurgans of the Sarmatian time (I-IV centuries AD),” Eurasian Soil Sci. 42, 778–787 (2009).

    Article  Google Scholar 

  9. N. N. Kashirskaya, T. E. Khomutova, V. V. Dmitriev, V. I. Duda, N. E. Suzina, and V. A. Demkin, “The morphology of cells and the biomass of microorganisms in the buried paleosols and modern steppe soils of the Lower Volga region,” Eurasian Soil Sci. 43, 1140–1149 (2010).

    Article  Google Scholar 

  10. O. A. Kislova and N. V. Kondrat’eva, “Viability of Nostoc commune Vauch. sensu Elenk. (Cyanophyta) after prolonged storage in air-dry state,” Al’gologiya 5 (2), 130–133 (1995).

    Google Scholar 

  11. V. P. Komaristaya and O. S. Gorbulin, “Sporopollenin in cell envelopes of Dunaliella salina Teod. (Chlorophyta) zygotes,” Al’gologiya 16 (1), 47–56 (2006).

    Google Scholar 

  12. N. V. Kondrat’eva and O. A. Kislova, “Species composition and occurrence of Cyanophyta in soil samples after prolonged storage in air-dry state,” Al’gologiya 5 (1), 29–33 (1995).

    Google Scholar 

  13. G. A. Kochkina, N. E. Ivanushkina, S. G. Karasev, E. Yu. Gavrish, L. V. Gurina, L. I. Evtushenko, E. V. Spirina, D. A. Gilichinskii, S. M. Ozerskaya, and E. A. Vorob’eva, “Survival of micromycetes and actinobacteria under conditions of long-term natural cryopreservation,” Microbiology (Moscow) 70, 356–364 (2001).

    Article  Google Scholar 

  14. N. A. Kryazhevskikh, E. V. Demkina, N. A. Manucharova, V. S. Soina, V. F. Gal’chenko, and G. I. El’-Registan, “Reactivation of dormant and nonculturable bacterial forms from paleosols and subsoil permafrost,” Microbiology (Moscow) 81, 435–445 (2012).

    Article  Google Scholar 

  15. G. G. Kuzyakhmetov and I. V. Dubovik, Analysis of Soil Algae (Bashkir State Univ., Ufa, 2001) [in Russian].

    Google Scholar 

  16. O. E. Marfenina, D. S. Sakharov, A. E. Ivanova, and A. V. Rusakov, “Mycological complexes in Holocene and Late Pleistocene paleohorizons and in fragments of paleosols,” Eurasian Soil Sci. 42, 432–439 (2009).

    Article  Google Scholar 

  17. D. S. Sakharov, Candidate’s Dissertation in Biology (Moscow, 2011).

    Google Scholar 

  18. A. D. Temraleeva, M. V. Eltsov, V. A. Demkin, and D. L. Pinsky, “Cyanobacteria and algae of buried soils and their modern analogues,” Paleontol. J. 48, 667–675 (2014).

    Article  Google Scholar 

  19. A. D. Temraleeva, E. V. Mincheva, Yu. S. Bukin, and A. M. Andreeva, Modern Methods for Isolation, Cultivation and Classification of Green Algae (Chlorophyta) (Kostromsk. Pechat. Dvor, Kostroma, 2014) [in Russian].

    Google Scholar 

  20. A. D. Temraleeva, E. V. Mincheva, Yu. S. Bukin, M. V. El’tsov, V. A. Demkin, D. Yu. Shcherbakov, and D. L. Pinskii, “Hemiflagellochloris (Chlorophyceae, Chlorophyta) is a new genus of green algae in Russia,” Nov. Sist. Nizshikh Rast. 48, 104–113 (2014).

    Google Scholar 

  21. T. E. Khomutova, T. S. Demkina, and V. A. Demkin, “Estimation of the total and active microbial biomasses in buried subkurgan paleosols of different ages,” Microbiology (Moscow) 73, 196–201 (2004).

    Article  Google Scholar 

  22. A. Kh. Sheudzhen, N. N. Neshchadim, and L. M. Onishchenko, Soil Organic Matter and Its Analysis (Adygeya, Maikop, 2007) [in Russian].

    Google Scholar 

  23. I. Yu. Kostikov, P. O. Romanenko, E. M. Demchenko, T. M. Darienko, T. I. Mikhailyuk, O. V. Rybchinskii, and A. M. Solonenko, Soil Algae of Ukraine: History and Methods of Analysis, System, and List of Flora (Fitosotsiotsentr, Kiev, 2001) [in Ukrainian].

    Google Scholar 

  24. S. C. Agrawal and Manisha, “Growth, survival and reproduction in Chlorella vulgaris and C. variegate with respect to culture age and under different chemical factors,” Folia Microbiol. 52 (4), 399–406 (2007).

    Article  Google Scholar 

  25. S. C. Agrawal and V. Singh, “Viability of dried cells, and survivability and reproduction under water stress, low light, heat, and UV exposure in Chlorella vulgaris,” Isr. J. Plant Sci. 49 (1), 27–32 (2001).

    Article  Google Scholar 

  26. A. W. Atkinson, B. E. S. Gunning, and P. C. L. John, “Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures,” Planta 107 (1), 1–32 (1972).

    Article  Google Scholar 

  27. B. M. Bristol-Roach, “On the retention of vitality by algae from old stored soils,” New Phytol. 18, 92–107 (1919).

    Article  Google Scholar 

  28. U. Brunner and R. Honegger, “Chemical and ultrastructural studies on the distribution of sporopolleninlike biopolymers in six genera of lichen phycobionts,” Can. J. Bot. 63, 2221–2230 (1985).

    Article  Google Scholar 

  29. J. Burczyk, “Biogenetic relationships between ketocarotenoids and sporopollenins in green algae,” Phytochemistry 28, 113–119 (1987).

    Google Scholar 

  30. H. Ettl and G. Gärtner, Syllabus der Boden-, Luft-und Flechtenalgen (Stuttgart, Gustav Fischer Verlag, 1995).

    Google Scholar 

  31. M. Geisert, T. Rose, W. Bauer, and R. K. Zahn, “Occurrence of carotenoids and sporopollenin in Nanochlorum eucaryotum, a novel marine alga with unusual characteristics,” Biosystems 20 (2), 133–142 (1987).

    Article  Google Scholar 

  32. W. Gross, “Ecophysiology of algae living in highly acidic environments,” Hydrobiologia 433 (1–3), 31–37 (2000).

    Article  Google Scholar 

  33. M. D. Guiry and G. M. Guiry, AlgaeBase (National University of Ireland, Galway, 2016). http://www. algaebase.org. Accessed February 10, 2016.

    Google Scholar 

  34. R. Honneger and V. Brunner, “Sporopollenin in cell walls of Coccomyxa and Myrmecia phycobionts of various lichens: an ultrastructure and chemical investigation,” Can. J. Bot. 59 (12), 2713–2734 (1981).

    Article  Google Scholar 

  35. A. Katana, J. Kwiatowski, K. Spalik, B. Zakrys, E. Szalacha, and H. Szymanska, “Phylogenetic position of Koliella (Chlorophyta) as inferred from nuclear and chloroplast small subunit rDNA,” J. Phycol. 37 (3), 443–451 (2001).

    Article  Google Scholar 

  36. J. Konig and E. Peveling, “Cell walls of the phycobionts Trebouxia and Pseudotrebouxia constituents and their localization,” Lichenologist 16, 129–144 (1984).

    Article  Google Scholar 

  37. L. A. Lewis and F. R. Trainor, “Survival of Protosiphon botryoides (Chlorophyceae, Chlorophyta) from a Connecticut soil dried for 43 years,” Phycologia 51 (6), 662–665 (2012).

    Article  Google Scholar 

  38. A. Lukesova and J. Frouz, “Soil and freshwater microalgae as a food source for invertebrates in extreme environments,” in Algae and Cyanobacteria in Extreme Environments, Ed. by J. Seckbach (Springer-Verlag, New York, 2007), pp. 265–284.

    Chapter  Google Scholar 

  39. O. E. Marfenina, A. E. Ivanova, E. E. Kislova, and D. S. Sacharov, “The mycological properties of medieval culture layers as a form of soil "biological memory” about urbanization,” J. Soils Sediments 8 (5), 340–348 (2008).

    Article  Google Scholar 

  40. B. C. Parker, N. Schanen, and R. Renner, “Viable soil algae from the herbarium of the Missouri Botanical Garden,” Ann. Mo. Bot. Gard. 56, 113–119 (1969).

    Article  Google Scholar 

  41. F. Puel, C. Largeau, and G. Giraud, “Occurrence of a resistant biopolymer in the outer cell walls of the parasitic alga Prototheca wickerhamii (Chlorococcales) ultrastructural and chemical studies,” J. Phycol. 23, 649–656 (1987).

    Article  Google Scholar 

  42. F. R. Trainor, “Survival of algae in a desiccated soil,” Phycologia 9, 111–113 (1970).

    Article  Google Scholar 

  43. F. R. Trainor, “Survival of algae in a desiccated soil: a 25 year study,” Phycologia 24, 79–82 (1985).

    Article  Google Scholar 

  44. F. R. Trainor and R. Gladych, “Survival of algae in desiccated soil: a 35-year study,” Phycologia 34, 191–192 (1995).

    Article  Google Scholar 

  45. R. Ueno, “Visualization of sporopollenin-containing pathogenic green microalga Prototheca wickerhamii by fluorescent in situ hybridization (FISH),” Can. J. Microbiol. 55 (4), 465–472 (2009).

    Article  Google Scholar 

  46. S. Watanabe, S. Tsujimura, T. Misono, S. Nakamura, and H. Inoue, “Hemiflagellochloris kazakhstanica gen. et sp. nov.: a new coccoid green alga with a flagella of considerably unequal lengths from a saline irrigation land in Kazakhstan (Chlorophyceae, Chlorophyta),” J. Phycol. 42 (3), 696–706 (2006).

    Article  Google Scholar 

  47. F. Xiong, J. Komenda, J. Kopecký, and L. Nedbal, “Strategies of ultraviolet-B protection in microscopic algae,” Physiol. Plant. 100 (2), 378–388 (1997).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Temraleeva.

Additional information

Original Russian Text © A.D. Temraleeva, S.V. Moskalenko, M.V. El’tsov, I.M. Vagapov, A.Yu. Ovchinnikov, L.A. Gugalinskaya, V.M. Alifanov, D.L. Pinskii, 2017, published in Pochvovedenie, 2017, No. 8, pp. 983–991.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temraleeva, A.D., Moskalenko, S.V., El’tsov, M.V. et al. Stability and morphological and molecular-genetic identification of algae in buried soils. Eurasian Soil Sc. 50, 952–960 (2017). https://doi.org/10.1134/S1064229317080129

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229317080129

Keywords

Navigation