Skip to main content
Log in

Fractionation and mobilization of toxic elements in floodplain soils from Egypt, Germany, and Greece: A comparison study

  • Soil Chemistry
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

Determining the chemical fractions of toxic elements (TEs) in soils is important to evaluate their mobilization and bioavailability. In this study, samples from three representative floodplain soils located close to the Rivers Nile (Egypt), Elbe (Germany), and Pinios (Greece) were used to link the soil formation and properties to the geochemical fractions and mobilization of cadmium (Cd), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) in these soils. The Elbe soil showed the highest total concentration of the elements except for Ni, in which the Pinios soil had the highest amount. A significant amount (55–94%) of the elements was present in the Elbe soil in the potentially mobile (non-residual) fraction, while the amount of this fraction ranged between 9 and 39% in the Pinios soil and between 9 and 34% in the Nile soil. In the Elbe soil, most of the non-residual Ni, Pb, and Zn was associated with the Fe-Mn oxide fraction, while Cd was distributed in the soluble plus exchangeable fraction and Cu in the organic fraction. In the Nile and Pinios soils the Fe-Mn oxide fraction was the abundant pool for Cu, Ni, Pb, and Zn whereas Cd had the highest amount in the soluble plus exchangeable as well as in the carbonate fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Ahmad, A. R. Usman, S. S. Lee, S. Kim, J. Joo, J. E. Yang, and Y. S. Ok, “Egg shell and coral wastes as low cost sorbents for the removal of Pb2+, Cd2+ and Cu2+ from aqueous solutions,” J. Ind. Eng. Chem. 18, 198–204 (2012).

    Article  Google Scholar 

  2. P. Akkajit and C. Tongcumpou, “Fractionation of metals in cadmium contaminated soil: Relation and effect on bioavailable cadmium,” Geoderma 156, 126–132 (2010).

    Article  Google Scholar 

  3. B. J. Alloway, “Soil processes and the behaviour of metals,” in Heavy Metals in Soils (Blackie Academic and Professional, London, 1995), pp. 11–37.

    Chapter  Google Scholar 

  4. S. Antic-Mladenovic, J. Rinklebe, T. Frohne, J. Stärk, R. Wennrich, Z. Tomi, and V. Licina, “Impact of controlled redox conditions on nickel in a serpentine soil,” J. Soils Sediments 11, 406–415 (2011).

    Article  Google Scholar 

  5. P. G. Appleby, H. H. Birks, and R. J. Flower, “Radiometrically determined dates and sedimentation rates for recent sediments in nine North African wetland lakes,” Aquat. Ecol. 35, 347–367 (2001).

    Article  Google Scholar 

  6. M. A. Ashraf, M. J. Maah, and I. Yusoff, “Chemical speciation and potential mobility of heavy metals in the soil of former tin mining catchment,” Sci. World J., (2012). doi: 10.1100/2012/125608

    Google Scholar 

  7. I. Devai, J. Patrick, W. H. Neue, H. DeLaune, R. D. Kongchum, and J. Rinklebe, “Methyl mercury and heavy metal content in soils of rivers Saale and Elbe (Germany),” Anal. Lett. 38, 1037–1048 (2005).

    Article  Google Scholar 

  8. E. Doelsch, G. Moussard, and H. Saint Macary, “Fractionation of tropical soil borne heavy metals–comparison of two sequential extraction procedures,” Geoderma 143, 168–179 (2008).

    Article  Google Scholar 

  9. C. Dorronsoro and P. Alonso, “Chronosequence in Almar River fluvial-terrace soil,” Soil Sci. Soc. Am. J. 5, 910–925 (1994).

    Article  Google Scholar 

  10. G. Du Laing, “Analysis and fractionation of trace elements in soils,” in Trace Elements in Soils, Ed. by P. S. Hooda (Chichester, UK, Wiley, 2010), pp. 53–80.

    Chapter  Google Scholar 

  11. G. Du Laing, J. Rinklebe, B. Vandecasteele, E. Meers, and F. M. Tack, “Trace metal behavior in estuarine and riverine floodplain soils and sediments: a review,” Sci. Total Environ. 407, 3972–3985 (2009).

    Article  Google Scholar 

  12. H. A. Elliott, B. A. Dempsey, and M. J. Maille, “Content and fractionation of heavy metals in water treatment sludges,” J. Environ. Qual. 19, 330–334 (1990).

    Article  Google Scholar 

  13. E. Evangelou, P. Dalias, C. Giourg, and C. D. Tsadilas, “Effect of land-use history on soil carbon and nitrogen in a Mediterranean catchment,” Commun. Soil Sci. Plant Anal. 45, 2331–2340 (2014).

    Article  Google Scholar 

  14. M. Garcia-Delgado, M. Rodriguez-Cruz, L. Lorenzo, M. Arienzo, and M. Sanchez-Martin, “Seasonal and time variability of heavy metal content and of its forms in sewage sludges from different wastewater treatment plants,” Sci. Total Environ. 382, 82–92 (2007).

    Article  Google Scholar 

  15. G. W. Gee and J. W. Bauder, “Particle size analysis,” in Methods of Soil Analysis: Physical and Mineralogy Methods, Part 1, Ed. by A. Klute, et al. (American Society of Agronomy, Madison, WI, 1986), pp. 383–412.

    Google Scholar 

  16. M. Graf, G. J. Lair, F. Zehetner, and M. H. Gerzabek, “Geochemical fractions of copper in soil chronosequences of selected European floodplains,” Environ. Pollut. 148, 788–796 (2007).

    Article  Google Scholar 

  17. K. Henle, F. Dziock, F. Foeckler, K. Follner, V. Hüsing, A. Hettrich, M. Rink, S. Stab, and M. Scholz, “Study design for assessing species environment relationships and developing indicator systems for ecological changes in floodplains–the approach of the RIVA Project,” Int. Rev. Hydrobiol. 91, 292–313 (2006).

    Article  Google Scholar 

  18. P. S. Hooda, Trace Elements in Soils (Chichester, UK, Wiley, 2010).

    Book  Google Scholar 

  19. Z. Hseu, “Concentration and distribution of chromium and nickel fractions along a serpentinitic toposequence,” Soil Sci. 171, 341–353 (2006).

    Article  Google Scholar 

  20. C. Kabala and B. R. Singh, “Fractionation and mobility of copper, lead and zinc in soil profiles in the vicinity of a copper smelter,” J. Environ. Qual. 30, 485–492 (2001).

    Article  Google Scholar 

  21. A. Kabata-Pendias, Trace Elements in Soils and Plants (CRC Press, Boca Raton, 2011).

    Google Scholar 

  22. F. Kruger and A. Grongroft, “The difficult assessment of heavy metal contamination of soils and plants in Elbe River floodplains,” Acta Hydrochim. Hydrobiol. 31, 436–443 (2003).

    Article  Google Scholar 

  23. G. Lair, M. Graf, F. Zehetner, and M. Gerzabek, “Distribution of cadmium among geochemical fractions in floodplain soils of progressing development,” Environ. Pollut. 156, 207–214 (2008).

    Article  Google Scholar 

  24. Q. Li, Z. F. Wu, B. Chu, N. Zhang, S. S. Cai, and J. H. Fang, “Heavy metals in coastal wetland sediments of the Pearl River estuary, China,” Environ Pollut. 149, 158–164 (2007).

    Article  Google Scholar 

  25. W. L. Lindsay and W. A. Norvell, “Development of a DTPA soil test for zinc, iron, manganese and copper,” Soil Sci. Soc. Am. J. 42, 421–428 (1978).

    Article  Google Scholar 

  26. R. H. Loeppert and W. P. Inskeep, “Iron,” in Methods of Soil Analysis: Chemical Methods, Part 3, Ed. by D. G. Sparks, et al. (American Society of Agronomy, Madison, WI, 1996), pp. 639–664.

    Google Scholar 

  27. L. Q. Ma and G. N. Rao, “Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils,” J. Environ. Qual. 26, 259–264 (1997).

    Article  Google Scholar 

  28. O. P. Mehra and M. L. Jackson, “Iron oxides removal from soils and clays by dithionate-citrate system buffered with sodium bicarbonate,” Clays Clay Miner. 7, 317–327 (1960).

    Article  Google Scholar 

  29. F. Nannoni, G. Protano, and F. Riccobono, “Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo,” Geoderma 16, 63–73 (2011).

    Article  Google Scholar 

  30. T. A. R. Nogueira, W. J. Melo, I. M. Fonseca, S. A. Marcussi, G. M. P. Melo, and M. O. Marques, “Fractionation of Zn, Cd, and Pb in a tropical soil after nine-year sewage sludge applications,” Pedosphere 20, 545–556 (2010).

    Article  Google Scholar 

  31. M. Overesch, J. Rinklebe, G. Broll, and H. Neue, “Metals and arsenic in soils and corresponding vegetation at Central Elbe River floodplains (Germany),” Environ. Pollut. 145, 800–812 (2007).

    Article  Google Scholar 

  32. M. Rajaie, N. Karimian, and J. Yasrebi, “Nickel transformation in two calcareous soil textural classes as affected by applied nickel sulfate,” Geoderma 144, 344–351 (2008).

    Article  Google Scholar 

  33. J. Rinklebe, PhD Thesis (Agricultural Faculty, Martin Luther University Halle, Wittenberg, Germany, 2004).

    Google Scholar 

  34. J. Rinklebe, C. Franke, and H.-U. Neue, “Aggregation of floodplain soils as an instrument for predicting concentrations of nutrients and pollutants,” Geoderma 141, 210–223 (2007).

    Article  Google Scholar 

  35. J. Rinklebe, C. Franke, and H.-U. Neue, “Verbreitung, Eigenschaften und Klassifikation von AuenbödenAuenbodenformen als Indikatoren für Nährund Schadstoffkonzentrationen,” in Entwicklung von Indikationssystemen am Beispiel der Elbaue (Ulmer Verlag, Stuttgart, 2009), pp. 130–153.

    Google Scholar 

  36. J. Rinklebe and U. Langer, “Microbial diversity in three floodplain soils at the Elbe River (Germany),” Soil Biol. Biochem. 38, 2144–2151 (2006).

    Article  Google Scholar 

  37. J. Rinklebe and S. M. Shaheen, “Assessing the mobilization of cadmium, lead, and nickel using a seven-step sequential extraction technique in contaminated floodplain soil profiles along the Central Elbe River, Germany,” Water, Air, Soil Pollut. 225 (8), 2039 (2014). doi: 10.1007/s11270-014-2039-1

    Article  Google Scholar 

  38. J. Rinklebe, A. Stubbe, H.-J. Staerk, R. Wennrich, and H.-U. Neue, “Factors controlling the dynamics of As, Cd, Zn, Pb in alluvial soils of the Elbe River (Germany),” in Proceedings of Environmental Science and Technology (American Science, New Orleans, 2005), Vol. 2, pp. 265–270.

    Google Scholar 

  39. M. Sánchez-Martín, M. García-Delgado, L. Lorenzo, M. Rodríguez-Cruz, and M. Arienzo, “Heavy metals in sewage sludge amended soils determined by sequential extractions as a function of incubation time of soils,” Geoderma 142, 262–273 (2007).

    Article  Google Scholar 

  40. E. Schlichting, H.-P. Blume, and K. Stahr, Bodenkundliches Praktikum (Blackwell, Berlin, 1995).

    Google Scholar 

  41. I. D. Sgouras, C. D. Tsadilas, N. Barbayiannis, and N. Danalatos, “Physicochemical and mineralogical properties of red Mediterranean soils from Greece,” Commun. Soil Sci. Plant Anal. 38, 695–711 (2007).

    Article  Google Scholar 

  42. S. M. Shaheen, “Sorption and lability of cadmium and lead in different soils from Egypt and Greece,” Geoderma 153, 61–68 (2009).

    Article  Google Scholar 

  43. S. M. Shaheen, M. E. Abo-Waly, and R. A. Ali, “Classification, characterization, and management of some agricultural soils in the North of Egypt,” in Developments in Soil Classification, Land Use Planning and Policy Implications: Innovative Thinking of Soil Inventory for Land Use Planning and Management of Land Resources, Ed. S. A. Shahid, et al. (Springer-Verlag, Dordrecht, 2013), pp. 417–447.

    Chapter  Google Scholar 

  44. S. M. Shaheen and J. Rinklebe, “Geochemical fractions of chromium, copper, and zinc and their vertical distribution in soil profiles along the Central Elbe River, Germany,” Geoderma 228–229, 142–159 (2014).

    Article  Google Scholar 

  45. S. M. Shaheen, J. Rinklebe, T. Frohne, J. White, and R. DeLaune, “Biogeochemical factors governing Co, Ni, Se, and V dynamics in periodically flooded Egyptian north Nile delta rice soils,” Soil Sci. Soc. Am. J. 78, 1065–1078 (2014).

    Article  Google Scholar 

  46. M. I. Sheppard and D. H. Thibault, “Desorption and extraction of selected heavy metals from soils,” Soil Sci. Soc. Am. J. 56, 415–423 (1992).

    Article  Google Scholar 

  47. M. L. Silva and G. C. Vitti, “Fractionation of heavy metals in polluted soil before and after rice cultivation,” Quim. Nova 31, 1385–1391 (2008).

    Article  Google Scholar 

  48. Soil Survey Staff, Key of Soil Taxonomy, 10th ed. (USDA-NRCS Government Printing Office, Washington DC, 2010).

    Google Scholar 

  49. D. L. Sparks, A. L. Page, P. A. Helmke, R. H. Loppert, P. N. Soltanpour, M. A. Tabatabai, C. T. Johnston, and M. E. Summner, Methods of Soil Analysis: Chemical Methods. Part 3 (American Society of Agronomy, Madison, WI, 1996).

    Google Scholar 

  50. A. Tessier, P. G. C. Campbell, and M. Bisson, “Sequential extraction procedure for the speciation of particulate trace metals,” Anal. Chem. 51, 844–851 (1979).

    Article  Google Scholar 

  51. C. D. Tsadilas, V. Samaras, and D. Dimoyiannis, “Phosphate sorption by red Mediterranean soils from Greece,” Commun. Soil Sci. Plant Anal. 27, 2279–2293 (1996).

    Article  Google Scholar 

  52. United States Environmental Protection Agency (USEPA), Test Method for Evaluating Solid Waste, Report Number SW-846 (USEPA Office of Solid Waste, Economic, Methods, and Risk Analysis Division, Washington DC, 1986).

    Google Scholar 

  53. K. Wälder, O. Wälder, J. Rinklebe, and J. Menz, “Estimation of soil properties with geostatistical methods in floodplains,” Arch. Agron. Soil Sci. 54, 275–295 (2008).

    Article  Google Scholar 

  54. X. Xian, “Effect of chemical forms of cadmium, zinc, and lead in polluted soils on their uptake by cabbage plants,” Plant Soil 113, 257–264 (1989).

    Article  Google Scholar 

  55. R. Xiao, J. Bai, H. Gao, L. Huang, C. Huang, and P. Liu, “Heavy metals (Cr and Ni) distribution and fractionation in cropland soils from reclaimed tidal wetlands in Pearl River estuary, South China,” Proc. Environ. Sci. 13, 1684–1687 (2012).

    Article  Google Scholar 

  56. H. Zeien and G. W. Brummer, “Chemische Extraktion zur Bestimmung von Schwermetallbindungsformen in Boden,” Mitt. Dtsch. Bodenkundl. Ges. 59, 505–510 (1989).

    Google Scholar 

  57. X. Zhong, S. Zhou, Q. Zhu, and Q. Zhao, “Fraction distribution and bioavailability of soil heavy metals in the Yangtze River delta–a case study of Kunshan city in Jiangsu Province, China,” J. Hazard. Mater. 198, 13–21 (2011).

    Article  Google Scholar 

  58. D. Zimmer, K. Kiersch, C. Baum, R. Meissner, G. Muller, P. Jand, and P. Leinweber, “Scale-dependent variability of as and heavy metals in a River Elbe floodplain,” Clean–Soil, Air, Water 39, 328–337 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabry M. Shaheen.

Additional information

Published in Russian in Pochvovedenie, 2015, No. 12, pp. 1450–1461.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaheen, S.M., Rinklebe, J. & Tsadilas, C.D. Fractionation and mobilization of toxic elements in floodplain soils from Egypt, Germany, and Greece: A comparison study. Eurasian Soil Sc. 48, 1317–1328 (2015). https://doi.org/10.1134/S1064229315120121

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229315120121

Keywords

Navigation