Skip to main content
Log in

Pedotransfer functions: State of the art, problems, and outlooks

  • Soil Physics
  • Published:
Eurasian Soil Science Aims and scope Submit manuscript

Abstract

The potential, state of the art, and outlooks of using the pedotransfer functions concept in soil science were analyzed. Current methods of developing the pedotransfer functions and their statistical and functional testing were considered. Problems related to the spatially distributed estimates of soil properties and parameters and their use in predictive modeling and soilscape assessment are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. A. Arkhangel’skaya, “A New Empirical Formula to Estimate the Thermal Diffusivity of Soil,” in Proceedings of the Scientific Session on Basic Soil Science, Moscow, Russia, 2004 (Moscow, 2004), pp. 45–46 [in Russian].

  2. T. A. Arkhangel’skaya, “Thermal Diffusivity of Gray Forest Soils in the Vladimir Opol’e Region,” Pochvovedenie, No. 3, 332–342 (2004) [Eur. Soil Sci. 37 (3), 285–294 (2004)].

  3. T. A. Arkhangel’skaya, M. A. Butylkina, M. A. Mazirov, et al., “Occurrence of Soils with the Second Humus Horizon in the Relief of a Gentle Smoothed Slope,” in Basic Physical Research in Soil Science and Land Reclamation: Proceedings of the All-Russian Conference, Moscow, Russia, 2003 (Moscow, 2003) [in Russian].

  4. T. A. Arkhangel’skaya, A. K. Guber, M. A. Mazirov, and M. V. Prokhorov, “The Temperature Regime of Heterogeneous Soilscape in Vladimir Opol’e Region,” Pochvovedenie, No. 7, 832–843 (2005) [Eur. Soil Sci. 38 (7), 734–744 (2005)].

  5. T. A. Arkhangel’skaya, O. I. Khudyakov, T. N. Bedrina, and A. V. Mitusov, “Lateral Variation of Agrophysical Parameters and the Heterogeneity of Hydrothermal Field in the Complex Soil Cover of Southern Moscow Region,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 2, 8–15 (2005).

  6. M. A. Butylkina, M. V. Kalisheva, L. A. Zolotaya, et al., “Characterizing the Soil Cover Structure by Geophysical Methods,” in Proceedings of the IV Congress of Dokuchaev Soil Science Society, Novosibirsk, Russia, 2004 (Novosibirsk, 2004), Vol. 1, p. 417 [in Russian].

    Google Scholar 

  7. A. F. Vadyunina and Z. A. Korchagina, Methods of Studying the Physical Properties of Soils (Agropromizdat, Moscow, 1986) [in Russian].

    Google Scholar 

  8. A. D. Voronin, A. V. Dembovetskii, and E. V. Shein, “Analysis of Basic Structural and Functional Relationships by Using the Database on Soil Physical Properties and Functions,” Pochvovedenie, No. 9, 1120–1123 (1997) [Eur. Soil Sci. 30 (9), 999–1002 (1997)].

  9. A. M. Globus, Soil-Hydrophysical Support of Agroecological Mathematical Models (Gidrometeoizdat, Leningrad, 1987) [in Russian].

    Google Scholar 

  10. A. K. Guber, E. V. Shein, Ya. A. Pachepskii, and W. J. Rawls, “Effect of Particle-Size and Aggregate Composition of Soil on Soil-Hydrological Constants,” in Current Problems of Agriculture and Ecology: Proceedings of International Scientific-Practical Conference, Kursk, Russia, 2002 (Kursk, 2002) pp. 282–287.

  11. A. V. Dembovetskii, Candidate’s Dissertation in Biology (Moscow, 1998).

  12. N. R. Draper and H. Smith, Applied Regression Analysis, 2nd ed. (Wiley, New York, 1981).

    Google Scholar 

  13. S. A. Nikolaeva, Ya. A. Pachepskii, R. A. Shcherbakov, et al., “Simulation of the Water Regime of Micellary Calcareous Ordinary Chernozem,” Pochvovedenie, No. 1, 44–54 (1988).

  14. E. V. Shein, T. A. Arkhangel’skaya, V. M. Goncharov, et al., Field and Laboratory Methods of Studying the Physical Properties and Regimes of Soils (Mosk. Gos. Univ., Moscow, 2001) [in Russian].

    Google Scholar 

  15. A. A. Smetnik, Yu. A. Spiridonov, and E. V. Shein, Migration of Pesticides in Soils (Moscow, 2005) [in Russian].

  16. Yu. N. Tyurin and A. A. Makarov, Computer-Aided Statistical Analysis of Data (INFRA-M, Moscow, 1998) [in Russian].

    Google Scholar 

  17. E. V. Shein, Ya. A. Pachepskii, A. K. Guber, and T. I. Chekhova, “Experimental Determination of Hydrophysical and Hydrochemical Parameters of Mathematical Models for Water and Salt Transfer in Soils,” Pochvovedenie, No. 12, 1479–1486 (1995).

  18. E. V. Shein, A. L. Ivanov, M. A. Butylkina, and M. A. Mazirov, “Spatial and Temporal Variability of Agrophysical Properties of Gray Forest Soils under Intensive Agricultural Use,” Pochvovedenie, No. 5, 578–585 (2001) [Eur. Soil Sci. 34 (5), 512–517 (2001)].

  19. E. V. Shein and K. A. Marchenko, “The Relationship between the Pathways of Water Movement and Spatial Distribution of Bulk Density in the Soils of the Vladimir Opol’e Region,” Pochvovedenie, No. 7, 823–831 (2001) [Eur. Soil Sci. 34 (7), 733–740 (2001)].

  20. E. V. Shein, A. V. Kirichenko, M. A. Butylkina, and Yu. N. Bueva, “Distribution of Soil-Genetic and Physical Properties of Gray Forest Soils in the Vladimirskoe Opol’e Region,” Vestn. Mosk. Univ., Ser. 17: Pochvoved., No. 4, 17–24 (2002).

  21. E. V. Shein and L. O. Karpachevskii, Explanatory Dictionary of Soil Physics (GEOS, Moscow, 2003) [in Russian].

    Google Scholar 

  22. K. J. Beven, “Linking Parameters Across Scale: Subgrid Parameterizations and Scale Dependent Hydrological Models,” Hydrol. Process 9, 507–525 (1995).

    Google Scholar 

  23. G. Blöschl, “Scaling in Hydrology,” Hydrol. Process 15, 709–711 (2001).

    Article  Google Scholar 

  24. G. Blöschl and R. B. Grayson, Spatial Observations and Interpolation. Spatial Patterns in Catchment Hydrology: Observations and Modeling, Ed. by R. B. Grayson and G. Blöschl (Cambridge Univ. Press, Cambridge, 2000), pp. 51–81.

    Google Scholar 

  25. J. Bouma, “Using Soil Survey Data for Quantitative Land Evaluation,” Adv. Soil Sci. 9, 177–213 (1989).

    Google Scholar 

  26. J. Bouma and H. Lin, A Proposal for a Symposium at the 18th World Congress of Soil Science, Philadelphia, 2006 (Philadelphia, 2006).

  27. J. Bouma, J. Stoorvogel, B. J. van Alphen, and H. W. G. Booltink, “Pedology, Precision Agriculture, and the Changing Paradigm of Agricultural Research,” Soil Sci. Soc. Am. J. 63, 1763–1768 (1999).

    Article  Google Scholar 

  28. J. Bouma and H. A. J. van Lanen, “Transfer Functions and Threshold Values: from Soil Characteristics to Land Qualities,” in Proceedings of the International Workshop on Quantified Land Evaluation Procedures, Washington, DC, USA, 1987 (Washington, 1987), pp. 106–110.

  29. A. Bruand, “Preliminary Grouping of Soils,” in Development of Pedotransfer Functions in Soil Hydrology, Ed. by Ya. Pachepsky and W. J. Rawls (Elsevier, 2004), pp. 159–174.

  30. M. Donatelli, H. Wösten, and G. Belocchi, “Evaluation of Pedotransfer Functions,” in Development of Pedotransfer Functions in Soil Hydrology, Ed. by Ya. Pachepsky and W. J. Rawls (Elsevier, 2004), pp. 357–363.

  31. P. A. Finke, J. H. M. Wösten, and M. J. W. Jansen, “Effects of Uncertainty in Major Input Variables on Simulated Functional Soil Behavior,” Hydrol. Process 10, 661–669 (1996).

    Article  Google Scholar 

  32. D. Gimenez, W. J. Rawls, Y. Pachepsky, and J. P. C. Watt, “Prediction of a Pore Distribution Factor from Soil Textural and Mechanical Parameters,” Soil Sci. 166, 79–88 (2001).

    Article  Google Scholar 

  33. G. Goovaerts, Geostatistics for Natural Resources Evaluation (Oxford Univ. Press, New York, 1997).

    Google Scholar 

  34. G. B. M. Heuvelink and E. J. Pebesma, “Spatial Aggregation and Soil Process Modeling,” Geoderma 89, 47–65 (1999).

    Article  Google Scholar 

  35. R. Horn, “Compressibility of Arable Land,” in Impact of Water and External Forces on Soil Structure, Ed. by J. Drescher, R. Horn, and M. de Boodt, Catena Supplements, No. 11 (Hannover, 1988) pp. 53–71.

  36. M. F. Hutchinson, “Development of a Continent-Wide DEM with Applications to Terrain and Climate Analysis,” in Environmental Modeling with GIS, Ed. by M. F. Goodchild, B. O. Parkks, and L. T. Steyaert (Oxford Univ. Press, New York, 1993), pp. 35–50.

    Google Scholar 

  37. H. Jenny, The Soil Resource, Origin, and Behavior (Springer, New York, 1980).

    Google Scholar 

  38. A. B. McBratney, B. Minasny, S. R. Cattle, and R. W. Vervoort, “From Pedotransfer Functions to Soil Inference Systems,” Geoderma, 41–73 (2002).

  39. A. B. McBratney, I. O. A. Odeh, T. F. A. Bishop, et al., “An Overview of Pedometric Techniques for Use in Soil Survey,” Geoderma 97, 293–327 (2000).

    Article  Google Scholar 

  40. R. A. McBride and P. J. Joosse, “Overconsolidation in Agricultural Soils: II. Pedotransfer Functions for Estimating Preconsolidation Stress,” Soil Sci. Soc. Am. J. 60, 373–380 (1996).

    Article  Google Scholar 

  41. N. J. McKenzie and D. W. Jacquier, “Improving the Field Estimation of Saturated Hydraulic Conductivity in Soil Survey,” Aust. J. Soil Res. 35, 803–825 (1997).

    Article  Google Scholar 

  42. N. J. McKenzie and P. J. Ryan, “Spatial Prediction of Soil Properties Using Environmental Correlation,” Geoderma 89, 67–94 (1999).

    Article  Google Scholar 

  43. D. A. Miller and R. A. White, “A Conterminous United States Multi-Layer Soil Characteristics Data Set for Regional Climate and Hydrology Modeling,” Earth Interactions (1998), http://EarthInteractions.org.

  44. Soil Survey Geographic Database (SSURGO): Data Use Information, Miscellaneous Publ. 1527 (USDA-NRCS, Washington, DC, 1995).

  45. A. Nemes, “Unsaturated Soil Hydraulic Database of Hungary: HUNSODA,” Agrokemia Talajtan 51, 17–26 (2002).

    Article  Google Scholar 

  46. A. Nemes, M. G. Schaap, F. J. Leij, and J. H. M. Wösten, “Description of the Unsaturated Soil Hydraulic Database UNSODA Version 2.0,” J. Hydrol. 251, 151–162 (2001).

    Article  Google Scholar 

  47. I. O. A. Odeh, A. B. McBratney, and D. J. Chittleborough, “Further Results on Prediction of Soil Properties from Terrain Attributes: Heterotopic Cokriging and Regression-Kriging,” Geoderma 67, 215–226 (1995).

    Article  Google Scholar 

  48. I. O. A. Odeh, A. B. McBratney, and D. J. Chittleborough, “Spatial Prediction of Soil Properties from Landform Attributes Derived from a Digital Elevation Model,” Geoderma 63, 197–214 (1994).

    Article  Google Scholar 

  49. Ya. Pachepsky and W. J. Rawls, “Accuracy and Reliability of Pedotransfer Functions as Affected by Grouping Soils,” Soil Sci. Soc. Am. J. 63, 1748–1757 (1999).

    Article  Google Scholar 

  50. Development of Pedotransfer Functions in Soil Hydrology, Ed. by Ya. Pachepsky and W. J. Rawls (Elsevier, 2004).

  51. Ya. A. Pachepsky and W. J. Rawls, “Preface: Status of Pedotransfer Functions,” in Development fo Pedotransfer Functions in Soil Hydrology (Elsevier, 2004), pp. VII–XVI.

  52. Ya. A. Pachepsky, W. J. Rawls, and D. J. Timlin, “The Current Status of Pedotransfer Functions: Their Accuracy, Reliability, and Utility in Field-and Regional-Scale Modeling,” in Assessment of Non-Point Source Pollution in the Vadose Zone, Geophysical Monograph, No. 108, (1999), pp. 223–234.

  53. Ya. Pachepsky and M. S. Schaap, “Data Mining and Exploration Techniques,” in Development of Pedotransfer Functions in Soil Hydrology (Elsevier, 2004), pp. 21–32.

  54. Ya. A. Pachepsky, D. Timlin, and G. Varallyay, “Artificial Neural Networks to Estimate Soil Water Retention from Easily Measurable Data,” Soil Sci. Soc. Am. J. 60, 727–733 (1996).

    Article  Google Scholar 

  55. V. Rasiah and B. D. Kay, “Characterizing Changes in Aggregate Stability Subsequent to Introduction of Forages,” Soil Sci. Soc. Am. J. 58, 935–942 (1994).

    Article  Google Scholar 

  56. W. J. Rawls and Y. A. Pachepsky, “Using Field Topographic Descriptors to Estimate Soil Water Retention,” Soil Sci. 167(7), 423–435 (2002).

    Article  Google Scholar 

  57. N. Romano, “Spatial Structure of PTF Estimates,” in Development of Pedotransfer Functions in Soil Hydrology (Elsevier, 2004), pp. 295–319.

  58. N. Romano and G. B. Chirico, “The Role of Terrain Analysis in Using and Developing Pedotransfer Functions,” in Development of Pedotransfer Functions in Soil Hydrology (Elsevier, 2004), pp. 273–294.

  59. M. G. Schaap, “Accuracy and Uncertainty in PTF Predictions,” in Development of Pedotransfer Functions in Soil Hydrology (Elsevier, 2004), pp. 33–43.

  60. M. G. Schaap and W. Bouten, “Modeling Water Retention Curves of Sandy Soils Using Neural Networks,” Water Resour. Res. 32, 3033–3040 (1996).

    Article  Google Scholar 

  61. A. C. Scheinost and U. Schwertmann, “Predicting Phosphate Adsorption-Desorption in a Soilscape,” Soil Sci. Soc. Am. J. 59, 1575–1580 (1995).

    Article  Google Scholar 

  62. W. Sinowski, A. C. Scheinost, and K. Auerswald, “Regionalization of Soil Water Retention Curves in a Highly Variable Soilscape: II. Comparison of Regionalization Procedures Using a Pedotransfer Function,” Geoderma 78, 145–159 (1997).

    Article  Google Scholar 

  63. K. Smettem, G. Pracilio, Y. Oliver, and R. Harper, “Data Availability and Scale in Hydrologic Applications,” Development of Pedotransfer Functions in Soil Hydrology (Elsevier, 2004), pp. 253–271.

  64. National Characterization Data (Soil Survey Laboratory, Lincoln, NE, 1997).

  65. State Soil Geographic Data Base (STATSGO), Data User Guide, Miscellaneous Publ. 1492 (U.S. Government Printing Office, Washington, DC, 1991).

  66. S. Tamari, J. H. M. Wösten, and J. C. Ruiz-Suarez, “Testing an Artificial Neural Network for Predicting Soil Hydraulic Conductivity,” Soil Sci. Soc. Am. J. 60, 1732–1741 (1996).

    Article  Google Scholar 

  67. D. J. Timlin, Ya. Pachepsky, B. Alcock, and F. Whistler, “Indirect Estimation of Soil Hydraulic Properties to Predict Soybean Yield Using GLYCIM,” Agric. Syst. 52, 331–353 (1996).

    Article  Google Scholar 

  68. B. J. van Alphen and J. J. Stoorvogel, “A Functional Approach to Soil Characterization in Support of Precision Agriculture,” Soil Sci. Soc. Am. J. 64, 1706–1713 (2000).

    Article  Google Scholar 

  69. H. A. J. van Lanen, C. A. J. van Diepen, G. J. Reinds, and G. H. J. de Koning, “A Comparison of Qualitative and Quantitative Physical Land Evaluations, Using an Assessment of the Potential for Sugar-Beet Growth in the European Community,” Soil Use Manage. 8, 80–89 (1992).

    Google Scholar 

  70. M. Th. van Genuchten, “A Closed Form Equation for Predicting the Hydraulic Conductivity of Unsaturated Soils,” Soil Sci. Soc. Am. J. 44, 892–898 (1980).

    Article  Google Scholar 

  71. J. R. Wilford, P. N. Bierwirth, and M. A. Craig, “Application of Airborne Gamma-Ray Spectrometry in Soil-Regolith Mapping and Applied Geomorphology,” Austral. Geol. Geophys. J. 17, 201–216 (1997).

    Google Scholar 

  72. J. H. M. Wösten, M. H. Bannink, J. de Gruiter, and J. Bouma, “A Procedure to Identify Different Groups of Hydraulic Conductivity and Moisture Retention Curves for Soil Horizons,” J. Hydrol. 86, 133–145 (1986).

    Article  Google Scholar 

  73. J. H. M. Wösten, A. Lilly, A. Nemes, and C. Le Bas, “Development and Use of a Database of Hydraulic Properties of European Soils,” Geoderma 90, 169–185 (1999).

    Article  Google Scholar 

  74. J. H. M. Wösten, C. H. J. E. Schuren, J. Bouma, and A. Stein, “Functional Sensitivity Analysis of Four Methods to Generate Soil Hydraulic Functions”. Soil Sci. Soc. Am. J. 54, 832–836 (1990).

    Article  Google Scholar 

  75. J. H. M. Wösten and M. Th. van Genuchten, “Using Texture and Other Soil Properties to Predict the Unsaturated Soil Hydraulic Functions,” Soil Sci. Soc. Am. J. 52, 1762–1770 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © E.V. Shein, T.A. Arkhangel’skaya, 2006, published in Pochvovedenie, 2006, No. 10, pp. 1205–1217.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shein, E.V., Arkhangel’skaya, T.A. Pedotransfer functions: State of the art, problems, and outlooks. Eurasian Soil Sc. 39, 1089–1099 (2006). https://doi.org/10.1134/S1064229306100073

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1064229306100073

Keywords

Navigation