Skip to main content
Log in

Structure and optical properties of ZnSe/SiO2 layered nanocomposites

  • Physical Science of Materials
  • Published:
Technical Physics Aims and scope Submit manuscript

Abstract

Structure and optical properties of ZnSe/SiO2 layered nanocomposites obtained using microwave magnetron sputtering have been studied. The nanocomposites are X-ray amorphous at relatively small thicknesses of the zinc selenide layers. When the thickness of the zinc selenide layers exceeds 20 Å, ZnSe/SiO2 films contain SiO2 amorphous phase and zinc selenide cubic nanocrystallites. It has been demonstrated that the thickness of zinc selenide layers affects the microstresses, refractive index, and band gap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Terekhin, O. V. Dement’eva, and V. M. Rudoi, Usp. Khim. 89, 477 (2011).

    Google Scholar 

  2. V. V. Klimov, Phys. Usp. 51, 839 (2008).

    Article  ADS  Google Scholar 

  3. M. E. Stewart, C. R. Anderton, L. B. Thompson, J. Matia, S. K. Gray, J. F. Rogers, and R. G. Nuzzo, Chem. Rev. 108, 494 (2008).

    Article  Google Scholar 

  4. V. I. Roldugin, Usp. Khim. 73, 123 (2004).

    Google Scholar 

  5. V. G. Solov’ev, “Experimental study of physical properties of regular matrix composites and layered systems with nanostructured inorganic and organic substances,” Doctoral Dissertation in Mathematics and Physics (St. Petersburg, 2015).

    Google Scholar 

  6. S. N. Shtykov and T. Yu. Rusinova, Ross. Khim. Zh. 52 (2), 92 (2008).

    Google Scholar 

  7. http://opticsorg/news/3/6/9

  8. http://wwwtechweekeuropecouk/workspace/quantum-dotspaveway-for-flexible-displays-49352.

  9. V. I. Klimov, A. A. Mikhailovsky, S. Xu, A. Malko, J. A. Hollingsworth, C. A. Leatherdale, H.-J. Eisler, and M. G. Bawendi, Science 290, 314 (2000).

    Article  ADS  Google Scholar 

  10. C. Dang, J. Lee, C. Breen, J. S. Steckel, S. Coe-Sullivan, and A. Nurmikko, Nat. Nanotechnol. 7, 335 (2012).

    Article  ADS  Google Scholar 

  11. M. Zhang, A. Banerjee, C.-S. Lee, J. M. Hinckley, and P. Bhattacharya, Appl. Phys. Lett. 98, 221 104–3 (2011).

    Google Scholar 

  12. Quantum Dots: Research, Technology and Applications, Ed. by R. W. Knoss (Nova Science, New York, 2008).

    Google Scholar 

  13. N. Zhao, T. P. Osedach, L.-Y. Chang, S. M. Geyer, D. Wanger, M. T. Binda, A. C. Arango, M. G. Bawendi, and V. Bulovic, ACS Nano 4, 3743 (2010).

    Article  Google Scholar 

  14. J. Chen, J. L. Song, X. W. Sun, W. Q. Deng, C. Y. Jiang, W. Lei, J. H. Huang, and R. S. Liu, Appl. Phys. Lett. 94, 153115-3 (2009).

  15. N. Tessler, V. Medvedev, M. Kazes, S. Kan, and U. Banin, Science 295, 1506 (2002).

    Article  ADS  Google Scholar 

  16. R. I. Romanov, V. V. Zuev, V. Yu. Fominskii, A. G. Gnedovets, and M. I. Alymov, Ross. Nanotekhnol. 8 (7/8), 22 (2013). wwwnanorfru.

    Google Scholar 

  17. T. V. Shubina, “Exitonic and plasmonic effects in nonideal wurtzite semoconducting crystals and nanostructures,” Doctoral Dissertation in Mathematics and Physics (St. Petersburg, 2008).

    Google Scholar 

  18. J. Alle’gre, G. Arnaud, H. Mathieu, P. Lefebvre, W. Granier, and L. Boudes, J. Cryst. Growth 138 (1–4), 998 (1994).

    Article  ADS  Google Scholar 

  19. P. A. Kurian, C. Vijayan, K. Sathiyamoorty, C. S. Suchand Sandeep, and Reji Philip, Nanoscale Res. Lett. 2, 561 (2007). doi 10.1007/s11671-007-9099-8

    Article  ADS  Google Scholar 

  20. T. Tokizaki, H. Akiyama, M. Takaya, and A. Nakamura, J. Cryst. Growth 117 (1–4), 603 (1992).

    Article  ADS  Google Scholar 

  21. M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald, and L. E. Brus, Phys. Rev. Lett. 65, 1623 (1990).

    Article  ADS  Google Scholar 

  22. S. V. Mikushev, “Transformation of electronic and vibrational states of nanocrystals into zone states of bulk II–VI semiconductors,” Candidate’s Dissertation in Mathematics and Physics (St. Petersburg, 2010).

    Google Scholar 

  23. S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y.-H. Xie, F. M. Ross, T. D. Harris, W. L. Brown, Y. J. Chabal, L. E. Brus, and P. H. Citrin, Phys. Rev. Lett. 72, 2648 (1994).

    Article  ADS  Google Scholar 

  24. S. H. Tolbert, A. B. Herhold, L. E. Brus, and A. P. Alivisatos, Phys. Rev. Lett. 76, 4384 (1996).

    Article  ADS  Google Scholar 

  25. R. N. Bhargava, D. Gallagher, X. Hong, and A. Nurmikko, Phys. Rev. Lett. 72, 416 (1994).

    Article  ADS  Google Scholar 

  26. P. N. Krylov, R. M. Zakirova, I. A. Knyazev, N. V. Kostenkov, E. A. Romanov, and I. V. Fedotova, Semiconductors 49, 1327 (2015).

    Article  ADS  Google Scholar 

  27. F. A. Pudonin, “Size effects and magnetic properties of amorphous nanostructures based on semiconductors and metals,” Doctoral Dissertation in Mathematics and Physics (Moscow, 2011).

    Google Scholar 

  28. A. V. Lukashin, “Formation of functional nanocomposites based on oxide matrices with ordered porous structure,” Doctoral Dissertation in Chemistry (Moscow, 2009).

    Google Scholar 

  29. S. S. Gorelik, Yu. A. Skakov, and L. N. Rastorguev, X-Ray and Electron Microscopic Analysis (MISiS, Moscow, 2002).

    Google Scholar 

  30. Ya. S. Umanskii, Yu. A. Skakov, A. N. Ivanov, L. N. Rastorguev, Crystallography, X-Ray and Electron Microscopy (Metallurgiya, Moscow, 1982).

    Google Scholar 

  31. Yang Jiang, Xiang-Min Meng, Wing-Ching Yiu, Ji Liu, JunXian Ding, Chun-Sing Lee, and Shuit-Tong Lee, J. Phys. Chem. B 108, 2784 (2004).

    Article  Google Scholar 

  32. D. Nesheva, M. J. Scepanovic, S. Askrabic, Z. Levi, I. Bineva, and Z. V. Popovic, Acta Phys. Pol., A 116 (1), 75 (2008).

    Article  ADS  Google Scholar 

  33. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, Phys. Usp. 50, 595 (2007).

    Article  ADS  Google Scholar 

  34. V. V. Brus, M. N. Solovan, E. V. Maistruk, I. P. Kozyarskii, P. D. Mar’yanchuk, K. S. Ul’yanitskii, and J. Rappich, Phys. Solid State 56, 1947 (2014).

    Article  Google Scholar 

  35. H. Jiang, X. Yao, J. Che, X. Wan, and M. Wang, J. Electroceram. 21, 733 (2008).

    Article  Google Scholar 

  36. D. S. Sofronov, E. M. Sofronova, E. I. Kostenyukova, V. V. Starikov, A. M. Lebedinskii, P. V. Mateichenko, and A. S. Opanasyuk, Zh. Nanolectron. Fiz. 6 (1), 1016 (2014).

    Google Scholar 

  37. M. Wang, Y. Wang, X. Yao, F. Kong, and L. Zhang, Chin. Sci. Bull. 49, 747 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. N. Krylov.

Additional information

Original Russian Text © P.N. Krylov, R.M. Zakirova, V.F. Kobziev, N.V. Kostenkov, I.V. Fedotova, R.R. Khamidullin, A.A. Dedyukhin, 2016, published in Zhurnal Tekhnicheskoi Fiziki, 2016, Vol. 86, No. 7, pp. 69–73.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krylov, P.N., Zakirova, R.M., Kobziev, V.F. et al. Structure and optical properties of ZnSe/SiO2 layered nanocomposites. Tech. Phys. 61, 1027–1031 (2016). https://doi.org/10.1134/S1063784216070173

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063784216070173

Navigation