Skip to main content
Log in

Effect of “Sodium Sulfite–Ascorbic Acid” Complex Antioxidant Additive on the Composition, Structure and Semiconducting Properties of PbSe Film

  • SURFACE PHYSICS AND THIN FILMS
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

Comparative experimental data, using dynamic light scattering methods, scanning electron and atomic force microscopy, on the composition, crystal structure, semiconductor and photoelectric properties of PbSe films deposited at the presence of sodium sulfite Na2SO3 and “sodium sulfite–ascorbic acid” complex antioxidant additive are presented. Significant changes in morphology, elemental and phase composition, the period of the crystal lattice of PbSe films been synthesized in the presence of Na2SO3 and Na2SO3 + C6H8O6 anti-oxidants before and after their thermoactivation at 653 K are found. It is shown that the introduction of a complex additive in comparison with Na2SO3 increases the homogeneity of the particles forming the layer, decreases the microstresses in it, reduces the value of thermal band gap from 0.349 to 0.308 eV, and increases the volt-watt sensitivity of the films by 28–30%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

REFERENCES

  1. V. G. Butkevich, V. D. Bochkov, and E. R. Globus, Prikl. Fiz., No. 6, 66 (2001).

  2. S. P. Zimin and E. S. Gorlachev, Nanostructured Lead Chalcogenides (YarGU, Yaroslavl’, 2011) [in Russian].

  3. D. Scaccabarozzi, B. Saggin, D. Baruffaldi, and M. Tarabini, Measurement 80, 108 (2016).

    Article  Google Scholar 

  4. H. Lee, C. Oh, and J. W. Hahn, Infrared Phys. Technol. 57, 50 (2013).

    Article  ADS  Google Scholar 

  5. C. Sierra, M. C. Torquemada, G. Vergara, M. T. Rodrigo, C. Gutiérrez, G. Pérez, I. Génova, I. Catalán, L. J. Gómez, V. Villamayor, M. Álvarez, D. Fernández, M. T. Magaz, and R. M. Almazán, Sens. Actuators, B 190, 464 (2014).

    Article  Google Scholar 

  6. G. E. Rachkovskaya, A. M. Malyarevich, and G. B. Zakharevich, Tr. BGTU, Ser. 3: Khim. Tekhnol. Neorg. V-v. 1, 152 (2010).

  7. S. Anwar, M. Pattanaik, B. K. Mishra, and S. Anwar, Mater. Sci. Semicond. Proc. 34, 45 (2015).

    Article  Google Scholar 

  8. O. E. Semonin, J. M. Luther, and M. C. Beard, Mater. Today 14, 508 (2012).

    Article  Google Scholar 

  9. V. Arivazhagan, M. M. Parvathi, and S. Rajesh, Vacuum 86, 1092 (2012).

    Article  ADS  Google Scholar 

  10. X. J. Wang, Y. B. Hou, Y. Chang, C. R. Becker, R. F. Klie, R. Kodama, F. Aqariden, and S. Sivananthan, J. Cryst. Growth 2010, 910 (2010).

    Article  ADS  Google Scholar 

  11. X. Sun, K. Gao, X. Pang, H. Yang, and A. A. Volinsky, Thin Solid Films 592, 59 (2015).

    Article  ADS  Google Scholar 

  12. N. Ghobadi and E. G. Hatam, J. Cryst. Growth 418, 111 (2015).

    Article  ADS  Google Scholar 

  13. V. F. Markov, N. A. Tretyakova, L. N. Maskaeva, V. M. Bakanov, and H. N. Mukhamedzyanov, Thin Solid Films 520, 5227 (2012).

    Article  ADS  Google Scholar 

  14. S. Wang, T. Shen, H. Bai, B. Li, and J. Tian, J. Mater. Chem. C 34, 8020 (2016).

    Article  Google Scholar 

  15. N. A. Tret’yakova, V. F. Markov, L. N. Maskaeva, and Kh. N. Mukhamedzyanov, Kondens. Sredy Mezhfaz. Granitsy 7, 189 (2005).

    Google Scholar 

  16. G. Almeida, S. Dogan, G. Bertoni, C. Giannini, R. Gaspari, S. Perissinotto, R. Krahne, S. Ghosh, and L. Manna, J. Am. Chem. Soc. 139, 3005 (2017).

    Article  Google Scholar 

  17. V. M. Yurk, L. N. Maskaeva, V. F. Markov, and V. G. Bamburov, Russ. J. Appl. Chem. 92, 394 (2019).

    Article  Google Scholar 

  18. W. Lv, X. Wang, Q. Qiu, F. Wang, Z. Luo, and W. Weng, J. Alloys Compd. 493, 358 (2010).

    Article  Google Scholar 

  19. D. Kim and H. S. Kim, Mater. Lett. 215, 191 (2018).

    Article  Google Scholar 

  20. Y. Wang, Y. Zhang, F. Wang, D. E. Giblin, J. Hoy, H. W. Rohrs, R. A. Loomis, and W. E. Buhro, Chem. Mater. 26, 2233 (2014).

    Article  Google Scholar 

  21. R. W. Crisp, D. M. Kroupa, A. R. Marshall, E. M. Miller, J. Zhang, and M. C. B. J. M. Luther, Sci. Rep. 5, 9945 (2015).

    Article  Google Scholar 

  22. P. Kumar, M. Pfeffer, C. Berthold, and O. Eibl, J. Alloys Compd. 724, 316 (2017).

    Article  Google Scholar 

  23. H. Yang, L. Chen, X. Li, and J. Zheng, Mater. Lett. 169, 273 (2016).

    Article  Google Scholar 

  24. Kh. N. Mukhamedzyanov, M. P. Mironov, S. I. Yagodin, L. N. Maskaeva, and V. F. Markov, Tsvetn. Met. 12, 57 (2009).

    Google Scholar 

  25. L. N. Maskaeva, V. F. Markov, Z. I. Smirnova, D. A. Belousov, and V. M. Yurk, RF Patent No. 2617350, Byull. Izobret., No. 12 (2017).

  26. V. M. Bakanov, Z. I. Smirnova, Kh. N. Mukhamedzyanov, L. N. Maskaeva, and V. F. Markov, Kondens. Sredy Mezhfaz. Granitsy 13, 401 (2011).

    Google Scholar 

  27. Z. I. Smirnova, V. M. Bakanov, L. N. Maskaeva, V. F. Markov, and V. I. Voronin, Phys. Solid State 56, 2561 (2014).

    Article  ADS  Google Scholar 

  28. V. S. Urusov, Isomorphic Miscibility Theory (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  29. K. C. Preetha and T. L. Remadevi, Mater. Sci. Semicond. Proc. 16, 605 (2013).

    Article  Google Scholar 

  30. S. A. Bashkirov, V. F. Gremenoka, V. A. Ivanov, K. Bente, P. P. Gladyshev, T. Yu. Zelenyak, A. M. Saad, and M. S. Tivano, Thin Solid Films 616, 773 (2016).

    Article  ADS  Google Scholar 

  31. W. Feng, J. Song, Y. Ren, L. Yi, J. Hu, R. Zhu, and H. Dong, Phys. E (Amsterdam, Neth.) 102, 153 (2018).

  32. V. P. Zlomanov, O. I. Tananaeva, and A. V. Novoselova, Zh. Neorg. Khim. 6, 2753 (1961).

    Google Scholar 

  33. A. S. Pashinkin and M. M. Spivak, Neorg. Mater. 24, 133 (1988).

    Google Scholar 

  34. V. V. Tomaev and Yu. V. Petrov, Glass Phys. Chem. 38, 240 (2012).

    Article  Google Scholar 

  35. N. P. Anisimova, N. E. Tropina, and A. N. Tropin, Semiconductors 44, 1554 (2010).

    Article  ADS  Google Scholar 

  36. M. F. Panov and V. V. Tomaev, Glass Phys. Chem. 38, 419 (2012).

    Article  Google Scholar 

  37. Kh. N. Mukhamedzyanov, V. F. Markov, and L. N. Maskaeva, Semiconductors 48, 263 (2014).

    Article  ADS  Google Scholar 

  38. X. Sun, K. Gao, X. Pang, H. Yang, and A. A. Volinsky, Appl. Surf. Sci. 356, 978 (2015).

    Article  ADS  Google Scholar 

  39. H. Yang, X. Li, T. Mei, and J. Zheng, Mater. Lett. 194, 142 (2017).

    Article  Google Scholar 

  40. M. C. Torquemada, M. T. Rodrigo, G. Vergara, F. J. Sranchez, R. Almazran, M. Verdru, P. Rodrrıguez, V. Villamayor, L. J. Gromez, and M. T. Montojo, J. Appl. Phys. 93, 1778 (2003).

    Article  ADS  Google Scholar 

  41. H. Yang, X. Li, G. Wang, and J. Zheng, AIP Adv. 8, 085316 (2018).

    Article  ADS  Google Scholar 

  42. L. Zhao, J. Qiu, B. Weng, C. Chang, Z. Yuan, and Z. Shi, J. Appl. Phys. 115, 084502 (2014).

    Article  ADS  Google Scholar 

  43. Ch. E. Ekuma, D. J. Singh, J. Moreno, and M. Jarrell, Phys. Rev. B 85, 085205 (2012).

    Article  ADS  Google Scholar 

  44. D. V. Shtanskii, S. A. Kulinich, E. A. Levashov, and J. J. Moore, Phys. Solid State 45, 1177 (2003).

    Article  ADS  Google Scholar 

  45. Yu. I. Golovin, Phys. Solid State 50, 2205 (2008).

    Article  ADS  Google Scholar 

  46. E. A. Levashova and D. V. Shtansky, Russ. Chem. Rev. 76, 463 (2007).

    Article  ADS  Google Scholar 

  47. M. Park, H. Kim, and J. P. Youngblood, Nanotechnology 19, 055705 (2008).

    Article  ADS  Google Scholar 

  48. R. Rahman and P. Servati, Nanotechnology 23, 055703-1 (2012).

    Article  ADS  Google Scholar 

  49. N. Titus, Sensors 18, 9 (2001).

    Google Scholar 

Download references

Funding

The work was carried out with the financial support of the program 211 of the Government of the Russian Federation no. 02.A03.21.0006, grant 20-48-660041 r_а of the Russian Foundation for Basic Research, and the state assignment of Federal Agency for Scientific Organizations (FANO) of Russia (project “Potok” no. AAAA-A18-118020190112-8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. N. Maskaeva.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by S. Rostovtseva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maskaeva, L.N., Yurk, V.M., Markov, V.F. et al. Effect of “Sodium Sulfite–Ascorbic Acid” Complex Antioxidant Additive on the Composition, Structure and Semiconducting Properties of PbSe Film. Phys. Solid State 62, 1949–1959 (2020). https://doi.org/10.1134/S1063783420100212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783420100212

Keywords:

Navigation