Skip to main content
Log in

Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules

  • Magnetism
  • Published:
Physics of the Solid State Aims and scope Submit manuscript

Abstract

The forces, deformations, and stresses generated in macromolecules attached to single-domain magnetic nanoparticles under the influence of a low-frequency (nonheating) magnetic field have been analyzed analytically and numerically. It has been shown that, in bioactive macromolecules, an alternating magnetic field with an induction of 0.1–1.0 T and a circular frequency of ≲104 s−1 can induce forces up to several hundred piconewtons, absolute deformations up to a few tens of nanometers, as well as compressive and shear stresses exceeding 107 Pa. These mechanical stimuli are sufficient for a significant change of interatomic distances in active centers, conformation of macromolecules, and even a breaking of some bonds, which makes it possible to develop a new technological platform for targeted delivery of drugs, remote control of their activity, and cancer-cell destruction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magnetic Nanoparticles: From Fabrication to Clinical Application, Ed. by N. T. K. Thanh (CRC Press, Boca Raton, Florida, United States, 2012).

    Google Scholar 

  2. Microfluidic Technologies for Human Health, Ed. by U. Demeric (World Scientific, Singapore, 2013).

    Google Scholar 

  3. Magnetic Nanomaterials, Ed. by C. S. S. Kumar (Wiley, New York, 2009).

    Google Scholar 

  4. L. Reddy, J. L. Areas, J. Nicolas, and P. Couvreur, Chem. Rev. 112, 5818 (2012).

    Article  Google Scholar 

  5. Z. Cheng, A. A. Zaki, J. Z. Hui, V. R. Muzykantov, and A. Tsourkas, Science (Washington) 338, 903 (2012).

    Article  ADS  Google Scholar 

  6. T. L. Doane and C. Burda, Chem. Soc. Rev. 41, 2885 (2012).

    Article  Google Scholar 

  7. K. E. Sapsford, W. R. Algar, L. Berti, K. B. Gemmill, B. J. Casey, E. Oh, M. H. Stewart, and I. L. Medintz, Chem. Rev. 113, 1904 (2013).

    Article  Google Scholar 

  8. R. Sensenig, Y. Sapir, C. MacDonald, S. Cohen, and B. Polyak, Nanomedicine (London) 7, 1425 (2012).

    Article  Google Scholar 

  9. V. E. Santo, M. T. Rodrigues, and M. E. Gomes, Expert Rev. Mol. Diagn. 13, 553 (2013).

    Article  Google Scholar 

  10. E. Castro and J. F. Mano, J. Biomed. Nanotechnol. 9, 1129 (2013).

    Article  Google Scholar 

  11. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, Adv. Drug Deliv. Rev. 63, 24 (2011).

    Article  Google Scholar 

  12. C. T. Yavuz, J. T. Mayo, W. W. Yu, A. Prakash, J. C. Falkner, S. Yean, L. Cong, H. J. Shipley, A. Kan, M. Tomson, D. Natelson, and V. L. Colvin, Science (Washington) 314, 964 (2006).

    Article  Google Scholar 

  13. J. Ravnik and M. Hriberšek, Comput. Mech. 51, 465 (2013).

    Article  MATH  MathSciNet  Google Scholar 

  14. E. P. Furlani and K. C. Ng, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 77, 061914 (2008).

    Article  Google Scholar 

  15. T. P. Forbes and S. P. Forry, Lab Chip 12, 1471 (2012).

    Article  Google Scholar 

  16. E. P. Furlani and X. Xue, Microfluid. Nanofluid. 13, 589 (2012).

    Article  Google Scholar 

  17. D. Shi, N. M. Bedford, and H.-S. Cho, Small 7, 2549 (2011).

    Article  Google Scholar 

  18. N. Modak, D. Kejriwal, K. Nandy, A. Datta, and R. Ganguly, Biomed. Microdevices 12, 23 (2010).

    Article  Google Scholar 

  19. A. Sinha, R. Ganguly, and I. K. Puri, J. Appl. Phys. 107, 034907 (2010).

    Article  ADS  Google Scholar 

  20. D. Yoo, H. Jeong, C. Preihs, J. Choi, T.-H. Shin, J. L. Sessler, and J. Cheon, Angew. Chem., Int. Ed. 51, 12482 (2012).

    Article  Google Scholar 

  21. B. Jeyadevan, J. Ceram. Soc. Jpn. 118, 391 (2010).

    Article  Google Scholar 

  22. Z. R. Stephen, F. M. Keivit, and M. Zhang, Mater. Today 14, 330 (2011).

    Article  Google Scholar 

  23. M. Wankhede, A. Bouras, M. Kaluzova, and C. G. Hadjipanayis, Expert Rev. Clin. Pharmacol. 5, 173 (2012).

    Article  Google Scholar 

  24. M. Creixell, A. C. Bohorquez, M. Torres-Lugo, and C. Rinaldi, ACS Nano 5, 7124 (2011).

    Article  Google Scholar 

  25. E. Amstad, J. Kohlbrecher, E. Muller, T. Schweizer, M. Textor, and E. Reimhult, Nano Lett. 11, 1664 (2011).

    Article  ADS  Google Scholar 

  26. P. M. Peiris, L. Bauer, R. Toy, E. Tran, J. Pansky, E. Doolittle, E. Schmidt, E. Hayden, A. Mayer, R. A. Keri, M. A. Griswold, and E. Karathanasis, ACS Nano 6, 4157 (2012).

    Article  Google Scholar 

  27. A. M. Klibanov, G. P. Samokhin, K. Martinek, and I. V. Berezin, Biochim. Biophys. Acta 438, 1 (1976).

    Article  Google Scholar 

  28. I. V. Berezin, A. M. Klibanov, and K. Martinek, Biochim. Biophys. Acta 364, 193 (1974).

    Article  Google Scholar 

  29. Yu. I. Golovin, in Proceedings of the 2nd International School “Nanomaterials and Nanotechnologies in Living Systems: Safety and Nanomedicine,” Moscow State University—RUSNANO, Moscow, September 19–24, 2011, p. 125.

  30. M. Sokolsky, N. Klyachko, N. Pothayee, Y. Golovin, R. Davis, J. Riffle, and A. Kabanov, Program and Proceedings of the Nanomedicine and Drug Delivery Symposium (NANO DDS’11), Salt Lake City, Utah, United States, October 15–16, 2011, p. 61.

  31. Yu. I. Golovin, N. L. Klyachko, D. Yu. Golovin, M. V. Efremova, A. A. Samodurov, M. Sokol’ski-Papkov, and A. V. Kabanov, Tech. Phys. Lett. 39(5), 24 (2013).

    Google Scholar 

  32. Handbook of Molecular Force Spectroscopy, Ed. by A. Noy (Springer-Verlag, Berlin, 2008).

    Google Scholar 

  33. Single Molecule Dynamics in Life Science, Ed. by T. Yanagida and Y. Ishii (Wiley, Wienheim, 2009).

    Google Scholar 

  34. T. Hoffmann and L. Dougan, Chem. Soc. Rev. 41, 4781 (2012).

    Article  Google Scholar 

  35. C. R. Hickenboth, J. S. Moore, S. R. White, N. R. Sottos, J. Baudry, and S. R. Wilson, Nature (London) 446, 423 (2007).

    Article  ADS  Google Scholar 

  36. K. M. Wiggins, J. N. Brantley, and C. W. Bielawski, ACS Macro Lett. 1, 623 (2012).

    Article  Google Scholar 

  37. J.-D. Wen, L. Lancaster, C. Hodges, A.-C. Zeri, S. H. Yoshimura, H. F. Noller, C. Bustamante, and I. Tinoco, Nature (London) 452, 598 (2008).

    Article  ADS  Google Scholar 

  38. J. Alegre-Cebollada, R. Perez-Jimenez, P. Kosuri, and J. M. Fernandez, J. Biol. Chem. 285, 18961 (2010).

    Article  Google Scholar 

  39. T. Mori, M. Asakura, and Y. Okahata, J. Am. Chem. Soc. 133, 5701 (2011).

    Article  Google Scholar 

  40. T. Mizuki, N. Watanabe, Y. Nagaoka, T. Fukushima, H. Morimoto, R. Usami, and T. Maekawa, Biochem. Biophys. Res. Commun. 393, 779 (2010).

    Article  Google Scholar 

  41. T. Bu, H.-C. E. Wang, and H. Li, Langmuir 28, 12319 (2012).

    Article  Google Scholar 

  42. E. M. Puchner and H. E. Gaub, Annu. Rev. Biophys. 41, 497 (2012).

    Article  Google Scholar 

  43. J. E. Reiner, A. Balijepalli, J. W. F. Robertson, J. Campbell, J. Suehle, and J. J. Kasianowicz, Chem. Rev. 112, 6431 (2012).

    Article  Google Scholar 

  44. N. L. Klyachko, M. Sokolsky-Papkov, N. Pothayee, M. V. Efremova, D. A. Gulin, N. Pothayee, A. A. Kuznetsov, A. G. Majouga, J. S. Riffle, Y. I. Golovin, and A. V. Kabanov, Angew. Chem., Int. Ed. 51, 12016 (2012).

    Article  Google Scholar 

  45. J. Carrey, V. Connord, and M. Respaud, Appl. Phys. Lett. 102, 232404 (2013).

    Article  ADS  Google Scholar 

  46. T. J. Mason and D. Peters, Practical Sonochemistry: Power Ultrasound Uses and Applications (Horwood, Chichester, United Kingdom, 2003).

    Google Scholar 

  47. Z.-L. Yu, W.-C. Zeng, and X.-L. Lu, Ultrason. Sonochem. 20, 805 (2013).

    Article  Google Scholar 

  48. K. Ninomiya, S. Kawabata, H. Tashita, and N. Shimizu, Ultrason. Sonochem. 21, 310 (2014).

    Article  Google Scholar 

  49. S. Mitragotri, Adv. Drug. Deliv. Rev. 65, 100 (2013).

    Article  Google Scholar 

  50. F. Gazeau, M. Levy, and C. Wilhelm, Nanomedicine 3, 831 (2008).

    Article  Google Scholar 

  51. A. V. Nagornyi, V. I. Petrenko, L. A. Bulavin, M. V. Avdeev, L. Almasy, L. Rosta, and V. L. Aksenov, Phys. Solid State 56(1), 91 (2014).

    Article  ADS  Google Scholar 

  52. A. M. Shutyi, Tech. Phys. 59(3), 325 (2014).

    Article  Google Scholar 

  53. V. I. Alshits, E. V. Darinskaya, M. V. Koldaeva, and E. A. Petrzhik, Crystallogr. Rep. 48(5), 762 (2003).

    Article  ADS  Google Scholar 

  54. Yu. I. Golovin, Phys. Solid State 46(5), 789 (2004).

    Article  ADS  Google Scholar 

  55. Yu. I. Golovin, R. B. Morgunov, V. E. Ivanov, and S. E. Zhulikov, JETP Lett. 68(5), 426 (1998).

    Article  ADS  Google Scholar 

  56. P. M. Peiris, E. Schmidt, M. Calabres, and E. Karatanasis, PLoS ONE 6, e15927 (2011).

    Article  ADS  Google Scholar 

  57. S. Das, P. Ranjan, P. S. Maiti, G. Singh, G. Leitus, and R. Klajn, Adv. Mater. (Weinheim) 25, 422 (2013).

    Article  Google Scholar 

  58. J.-H. Park, G. von Maltzahn, L. Zhang, A. M. Derfus, D. Simberg, T. J. Harris, E. Ruoslahti, S. N. Bhatia, and M. J. Sailor, Small 5, 694 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. I. Golovin.

Additional information

Original Russian Text © Yu.I. Golovin, S.L. Gribanovskii, D.Yu. Golovin, N.L. Klyachko, A.V. Kabanov, 2014, published in Fizika Tverdogo Tela, 2014, Vol. 56, No. 7, pp. 1292–1300.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golovin, Y.I., Gribanovskii, S.L., Golovin, D.Y. et al. Single-domain magnetic nanoparticles in an alternating magnetic field as mediators of local deformation of the surrounding macromolecules. Phys. Solid State 56, 1342–1351 (2014). https://doi.org/10.1134/S1063783414070142

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063783414070142

Keywords

Navigation