Skip to main content
Log in

Silicon nanoclusters ncl-Si in a hydrogenated amorphous silicon suboxide matrix a-SiOx:H (0 < x < 2)

  • Review
  • Published:
Semiconductors Aims and scope Submit manuscript

Abstract

Published data concerning plasma methods of the fabrication and study of silicon nanoclusters ncl-Si in crystalline (c-SiO2) and amorphous (a-SiOx:H) matrices are reviewed. The effect of radio-fre- quency (RF) and direct-current (dc) discharge modulation on the growth kinetics of ncl-Si is considered. The results of infrared spectroscopy, mass spectrometry, and laser-beam scanning of the plasma composition are analyzed. The behavior of nanoparticles is described depending on their charge and size in plasma under the effect of electric, magnetic, and gravity forces and under the influence of the dynamics of gases contained within the plasma. Infrared spectroscopy data on the a-SiOx:H film matrix are analyzed. The photoluminescence properties of ncl-Si fabricated using different techniques are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanostructures and Nanomaterials (LIBROKOM, Moscow, 2009) [in Russian].

  2. A. I. Gusev, Nanomaterials, Nanostructures, Nanotechnologies (Fizmatgiz, Moscow, 2007) [in Russian].

  3. I. P. Suzdalev, Khim. Fiz. 22, 69 (2003).

    Google Scholar 

  4. M. Hamasaki, T. Adachi, S. Wakayama, and M. Kikuchi, J. Appl. Phys. 49, 3987 (1978).

    Article  ADS  Google Scholar 

  5. K. L. Chopra, Thin Film Phenomena (McGraw-Hill, New York, 1969; Mir, Moscow, 1972).

  6. L. Patrone, D. Nelson, V. I. Safarov, M. Sentis, W. Marine, and S. Giorgio, J. Appl. Phys. 87, 3829 (2000).

    Article  ADS  Google Scholar 

  7. A. Puzder, A. J. Williamson, J. C. Grossman, and G. Galli, Phys. Rev. Lett. 88, 09740 (2002).

    Article  Google Scholar 

  8. O. B. Gusev, A. N. Poddubny, A. A. Prokofiev, and I. N. Yassievich, Semiconductors 47, 183 (2013).

    Article  ADS  Google Scholar 

  9. D. Guzman, U. Corona, and M. Cruz, J. Luminesc. 102–103, 487 (2003).

    Article  Google Scholar 

  10. F. Fogarassy, A. Slaoui, and M. Froment, Phys. Rev. B 37, 6468 (1988).

    Article  ADS  Google Scholar 

  11. V. Ya. Bratus’, V. A. Yukhimchuk, L. I. Berezhinskii, M. Ya. Valakh, I. P. Vorona, I. Z. Indutnyi, T. T. Petrenko, P. E. Shepelyavyi, and I. B. Yamchuk, Semiconductors 35, 821 (2001).

    Article  ADS  Google Scholar 

  12. A. A. Seraphin, S.-T. Ngiam, and K. D. Kolendrander, J. Appl. Phys. 80, 6429 (1996).

    Article  ADS  Google Scholar 

  13. H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, and T. Nakagiri, Appl. Phys. Lett. 56, 2379 (1990).

    Article  ADS  Google Scholar 

  14. S. Takeoka, M. Fujii, and S. Hoyashi, Phys. Rev. B 62, 16820 (2000).

    Article  ADS  Google Scholar 

  15. B. Drevillon, J. Perrin, J. M. Siefert, J. Huc, A. Lioret, G. de Rosny, and P. M. Schmitt, Appl. Phys. Lett. 42, 801 (1983).

    Article  ADS  Google Scholar 

  16. R. Krishnan, Q. Xie, J. Kulik, X. D. Wang, S. Lu, M. Molinari, Y. Gao, T. D. Krauss, and P. M. Fauchet, J. Appl. Phys. 96, 654 (2004).

    Article  ADS  Google Scholar 

  17. Y. Kanzawa, S. Hayashi, and K. Yamamoto, J. Phys.: Condens. Matter 8, 4823 (1996).

    ADS  Google Scholar 

  18. Ch. Hollenstein, A. A. Howling, C. Courteille, D. Magni, S. M. Scholz, G. M. W. Kroesen, N. Simons, W. de Zeeuw, and W. Schwarzenbach, J. Phys. D: Appl. Phys. 31, 74 (1998).

    Article  ADS  Google Scholar 

  19. Y. Rui, D. Chen, J. Xu, Y. Zhang, L. Yang, J. Mei, Z. Ma, Z. Cen, W. Li, L. Xu, X. Huang, and K. Chen, J. Appl. Phys. 98, 033532 (2005).

    Article  ADS  Google Scholar 

  20. C. Biasotto, A. M. Dalrini, R. C. Teixeira, F. A. Bascoli, J. A. Diniz, S. A. Moshkalev, and I. Doi, J. Vac. Sci. Technol. B 25, 1166 (2007).

    Article  Google Scholar 

  21. G. Lucovsky, J. Yang, S. S. Chao, J. E. Tyler, and W. Czubatyi, Phys. Rev. B 28, 3225 (1983).

    Article  ADS  Google Scholar 

  22. M. H. Brodsky, M. Cardona, and J. J. Guomo, Phys. Rev. B 16, 3556 (1977).

    Article  ADS  Google Scholar 

  23. J. C. Knights, R. A. Street, and G. Lucovsky, J. NonCryst. Solids 35–36, 279 (1980).

    Article  ADS  Google Scholar 

  24. R. N. Carlile, S. Geha, J. F. O’Hanlon, and J. C. Stewart, Appl. Phys. Lett. 59, 1167 (1991).

    Article  ADS  Google Scholar 

  25. T. T. Korchagina, D. V. Marin, V. A. Volodin, A. A. Popov, and M. Vergnat, Semiconductors 43, 1514 (2009).

    Article  ADS  Google Scholar 

  26. L. Boufendi, J. Hermann, A. Bouchoule, B. Dubreuli, S. Stoffele, W. W. Stoffels, and M. L. de Giorgi, J. Appl. Phys. 76, 148 (1994).

    Article  ADS  Google Scholar 

  27. D. M. Tanenbaum, A. L. Laracuente, and A. Gallagher, Appl. Phys. Lett. 68, 1705 (1996).

    Article  ADS  Google Scholar 

  28. Y. Watanabe and M. Shiratani, Jpn. J. Appl. Phys. 32 (6B, pt. 1), 3074 (1993).

    Article  ADS  Google Scholar 

  29. L. Boufendi, M. Ch. Jouanny, E. Kovacevic, J. Berndt, and M. M. Kikian, J. Phys. D: Appl. Phys. 44, 174035 (2011).

    Article  ADS  Google Scholar 

  30. S. J. Choi and M. J. Kushner, J. Appl. Phys. 74, 853 (1993).

    Article  ADS  Google Scholar 

  31. M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, J. Exp. Theor. Phys. 98, 287 (2004).

    Article  ADS  Google Scholar 

  32. L. Boufendi, A. Plain, J. Ph. Blondean, A. Bouchoule, C. Laure, and M. Toogood, Appl. Phys. Lett. 60, 169 (1992).

    Article  ADS  Google Scholar 

  33. M. T. Swihart and S. L. Girshick, J. Phys. Chem. B 103, 64 (1999).

    Article  Google Scholar 

  34. K. Koga, Y. Matsuoka, K. Tanaka, M. Shiratani, and Y. Watanabe, Appl. Phys. Lett. 77, 196 (2000).

    Article  ADS  Google Scholar 

  35. Ch. Hollenstein, J. L. Dorier, J. Dutta, L. Sansonnens, and A. A. Howling, Plasma Sources Sci. Technol. 3, 278 (1994).

    Article  ADS  Google Scholar 

  36. Y. Watanabe, M, Shiratani, Y. Kubo, I. Ogana, and S. Ogi, Appl. Phys. Lett. 53, 1263 (1988).

    Article  ADS  Google Scholar 

  37. L. Boufendi and A. Bouchoule, Plasma Sources Sci. Technol. 3, 262 (1994).

    Article  ADS  Google Scholar 

  38. M. A. Olevanov, Yu. A. Mankelevich, and T. V. Rakhimova, J. Exp. Theor. Phys. 96, 444 (2003).

    Article  ADS  Google Scholar 

  39. M. P. Garrity, T. W. Peterson, and J. F. O’Hanlon, J. Vac. Sci. Technol. A 14, 550 (1996).

    Article  ADS  Google Scholar 

  40. Y. Watanabe and M. Shiratani, Plasma Sources Sci. Technol. 3, 286 (1994).

    Article  ADS  Google Scholar 

  41. B. S. Danilin and V. K. Syrchin, Magnetron Sputtering Systems (Radio Svyaz’, Moscow, 1982) [in Russian].

  42. L. Couëdel, M. M. Mikikian, L. Boufendi, and A. A. Samarian, Phys. Rev. E 74, 026403 (2006).

    Article  ADS  Google Scholar 

  43. L. Couëdel, A. A. Samarian, M. Mikikian, and L. Boufendi, Phys. Plasmas 15, 063705 (2008).

    Article  ADS  Google Scholar 

  44. A. Bouchoule, A. Plain, L. Boufendi, J. Ph. Blondeau, and C. Laure, J. Appl. Phys. 70, 1991 (1991).

    Article  ADS  Google Scholar 

  45. L. Boufendi, J. Gaudin, S. Huet, G. Viera, and M. Dudemaine, Appl. Phys. Lett. 79, 4301 (2001).

    Article  ADS  Google Scholar 

  46. A. A. Foudman, L. Boufendi, T. Heid, B. V. Potapkin, and A. Bouchoule, J. Appl. Phys. 79, 1303 (1996).

    Article  ADS  Google Scholar 

  47. D. A. Doughty and A. Gallagher, Phys. Rev. A 42, 6166 (1990).

    Article  ADS  Google Scholar 

  48. L. Leb, Basic Processes Involving Electric Discharges in Gases (Gos. Izdat. Tekh.-Teor. Liter., Moscow, Leningrad, 1950) [in Russian].

  49. T. Fukuzawa, S. Kushima, Y. Matsuoka, M. Shiratani, and Y. Watanabe, J. Appl. Phys. 86, 3543 (1999).

    Article  ADS  Google Scholar 

  50. P. G. Pai, S. S. Chao, Y. Takagi, and G. Lucovsky, J. Vac. Sci. Technol. A 4, 689 (1986).

    Article  ADS  Google Scholar 

  51. G. Lucovsky, Solid State Commun. 29, 571 (1979).

    Article  ADS  Google Scholar 

  52. M. A. Paesler, D. A. Anderson, E. C. Freeman, G. Moddel, and W. Paul, Phys. Rev. Lett. 41, 1492 (1978).

    Article  ADS  Google Scholar 

  53. G. Lucovsky and W. B. Pollard, J. Vac. Sci. Technol. A 1, 313 (1983).

    Article  ADS  Google Scholar 

  54. D. V. Tsu, G. Lucovsky, and B. N. Davidson, Phys. Rev. B 40, 1795 (1989).

    Article  ADS  Google Scholar 

  55. F. L. Galeener and G. Lucovsky, Phys. Rev. Lett. 37, 55 (1970).

    Google Scholar 

  56. G. Lucovsky and J. E. Tyler, J. Non-Cryst. Sol. 75, 429 (1985).

    Article  ADS  Google Scholar 

  57. H. Z. Song, X. M. Bao, N. S. Li, and X. L. Wu, Appl. Phys. Lett. 72, 356 (1998).

    Article  ADS  Google Scholar 

  58. R. Carius, R. Fischer, E. Holzenkampfer, and J. Stuke, J. Appl. Phys. 52, 4241 (1981).

    Article  ADS  Google Scholar 

  59. W. D. A. M. de Boer, D. Timmerman, K. Dohnalova, I. N. Yassievich, H. Zhang, W. J. Buma, and T. Gregorkiewiecz, Nature Nanotechnol. 5, 878 (2010).

    Article  ADS  Google Scholar 

  60. D. J. Lockwood and A. G. Wang, Solid State Commun. 94, 905 (1995).

    Article  ADS  Google Scholar 

  61. D. Kovalev, H. Heckler, G. Polisski, and F. Koch, Phys. Status Solidi B 215, 871 (1999).

    Article  ADS  Google Scholar 

  62. G. Allan, C. Delerue, and M. Lannoo, Phys. Rev. Lett. 78, 3161 (1997).

    Article  ADS  Google Scholar 

  63. O. B. Gusev, Yu. S. Vainshtein, Yu. K. Undalov, O. S. Yeltsina, I. N. Trapeznikova, E. I. Terukov, and O. M. Sreseli, JETP Lett. 94, 370 (2011).

    Article  ADS  Google Scholar 

  64. O. M. Sreselli, O. B. Gusev, J. S. Vainshtein, Yu. K. Undalov, O. S. Yeltsina, A. A. Sitnikova, and E. I. Terukov, Solid State Phenom. 178–179, 465 (2011).

    Article  Google Scholar 

  65. S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y. H. Xie, F. M. Ross, T. D. Harris, W. L. Brown, Y. J. Chabal, L. E. Brus, and P. H. Citrin, Phys. Rev. Lett. 72, 2648 (1994).

    Article  ADS  Google Scholar 

  66. S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y. H. Xie, F. M. Ross, Y. J. Chabal, T. D. Harris, L. E. Brus, W. L. Brown, E. E. Chaban, P. F. Szajowski, S. B. Christman, and P. H. Citrin, Phys. Rev. B 52, 4910 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Undalov.

Additional information

Original Russian Text © Yu.K. Undalov, E.I. Terukov, 2015, published in Fizika i Tekhnika Poluprovodnikov, 2015, Vol. 49, No. 7, pp. 887–898.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Undalov, Y.K., Terukov, E.I. Silicon nanoclusters ncl-Si in a hydrogenated amorphous silicon suboxide matrix a-SiOx:H (0 < x < 2). Semiconductors 49, 867–878 (2015). https://doi.org/10.1134/S1063782615070222

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063782615070222

Navigation