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Prompt detection of oligonucleotides with semiconductor devices is a technique that 

is believed to be capable of improving all current genetics technologies
1
. Almost every 

detection method requires the use of fluorescent dyes and markers
2-5

 for the indirect 

measurements of the nucleic acids’ characteristics. The development of pH sensing has 

provided a significant improvement to the field of label-free, real-time, and non-optical 

semiconductor sequencing
6
 and amplification

7
. Another promising conception is single-

molecule nanopore analysis
8-10

. However, a superior method for oligonucleotide detection 

has yet to be developed. Here, we demonstrate that synthetic oligonucleotides can be 

directly detected without labels by their self-resonant modes with silicon nanosandwich 

pump device. The self-resonant modes of oligonucleotides are identified not only by Raman 

spectroscopy
11,12

 , but also with a silicon nanosandwich-based pump device that provides 

both the excitation of the oligonucleotides’ self-resonant modes and feedback for current-

voltage measurements. Our results demonstrate a new method for label-free, real-time 

oligonucleotide characterisation by their self-resonant modes, which are unique to their 

conformation and sequence. We anticipate that our assay will be used as a starting point 

for a more detailed investigation of the aforementioned mechanism, which can be used as a 

basis for oligonucleotide detection and analysis. Furthermore, this technique can be applied 

to improve existing modern genetics technologies. 

The real-time amplification and detection of nucleic acids has given rise to the 

development of life science research and molecular diagnostics
2,3,5

. These methods are now a 

basis of the techniques applied for the express detection and quantification of small amounts of 

nucleic acids and have a wide array of applications
2-5

. However, use of these techniques for the 

real-time detection of nucleic acids requires precision optics as well as fluorescently labelled, 

sequence-specific probes or fluorescent dyes for DNA labelling
3,5

. These requirements represent 

a significant disadvantage of such techniques because of the need to collect oligonucleotide 

signals indirectly. Several attempts have been made to resolve this issue. Recently, a 

semiconductor-based nucleic acid sequencer that uses the pH-sensing capability of ion-sensitive 

field-effect transistors (ISFET) has been demonstrated
6
. Another device that is capable of 

amplifying and detecting DNA simultaneously using embedded heaters, temperature sensors, 

and ISFET sensor arrays also appears to be highly effective
7
. The most important result of the 

studies mentioned was to simultaneously provide amplification and detection. Nevertheless, 

despite the development of ISFET technology
13-16

, there are still challenges that it cannot 

address. The most crucial disadvantage of ISFET-based sensors is that they are based on a pH-

sensing mechanism that is not target specific. 

Here, we present a new method of oligonucleotide detection by the excitation of their 

self-resonant modes with silicon nanosandwich pump device, which correspond to the unique 

combination of the nucleotide sequence and entire molecular shape. This proposed 

oligonucleotide detection method is based on the interaction of a silicon nanosandwich with 

nucleic acids deposited on its surface. This silicon nanosandwich represents an ultra-narrow, p-

type silicon quantum well (Si-QW) confined by delta barriers heavily doped with boron on the n-

Si (100) wafer (Fig. 1a). The edge channels of this Si-QW have been shown to be an effective 



source of THz emission caused by the presence of the negative-U dipole boron centres (Figs. 1b, 

1c and 1d)
17

 (see the Methods Summary for details). To increase the selective THz line emission, 

the corresponding system of microcavities is introduced into the Si-QW plane
17

. Such devices 

allow for the creation of THz spectra that are similar to the self-resonant modes of 

oligonucleotides
11,12,18

. Thus, the excitation of the self-resonant modes of the oligonucleotides 

deposited in the Si-QW plane becomes possible and provides feedback that gives rise to the 

changes in the conductance of the edge channels. 

The U-I characteristics of the silicon nanosandwich prepared within the frameworks of 

the Hall geometry were measured under the stabilisation of a drain-source current to define the 

resonant frequencies of the oligonucleotides (Fig. 1a) (see the Methods Summary for details). 

The oligonucleotides were precisely deposited onto the delta barrier above the edge channels of 

the silicon nanosandwich with a micropipette and microfluidic system (Fig. 1e, 1f and 1g). The 

concentration was selected to provide no more than one oligonucleotide per microcavity (see the 

Methods Summary for details). 

 
Figure 1 | Scheme of the silicon nanosandwich. a, The silicon nanosandwich representing the ultra-narrow p-type silicon 
quantum well confined by delta barriers heavily doped with boron on the n-type Si (100) wafer. b, The reconstructed trigonal 
dipole boron centres that result from the negative-U reaction, 2B

o
 → B

+
 + B

-
. c, STM image of the upper delta barrier heavily 

doped with boron that demonstrates the chains of dipole boron centres oriented along the [011] axis. d, Diagram showing 
the wave packs of holes in the edge channels of the dipole boron centres in the delta barriers. e, Image of the contact region 
showing the edge channels scheme. f, g, Scheme of an oligonucleotide molecule placed on the edge channels confined by the 
dipole boron centres. 

The changes of the longitudinal voltage Uxx and lateral (Hall) voltage Uxy appeared to 

demonstrate the resonant behaviour as a function of the Ids value (Figs. 2a, 2b). The Ids steps 

revealed by measuring the Uxx-Ids characteristics allow us to define the generation frequency (f) 

using the relation I=epf, where I is the Ids value corresponding to a step on the Uxx-Ids 

characteristics and p is the number of holes in the edge channels, which depends on the sheet 

density (see the Methods Summary section for details). This approach is given by the quantum 

pump operational method because the nanowire-turnstile device has been shown to perform as a 

quantum pump
19

. We use the same method in this study, with the only difference being that the 

nanowire with modulated barriers created by gating is replaced by the edge channels of the 

silicon nanosandwich (Fig. 1e). Moreover, the dipole boron centres in the edge channels have 

been shown to be magnetically ordered by the exchange interaction through the 2D holes
17

. 

Thus, the fragments of edge channels with single holes appear to be represented as independent 



quantum pumps, thereby providing the relation I=epf for a large number of holes. Besides, the 

number of holes in the edge channels must define the parameters of the microcavities introduced 

into the Si-QW plane to only provide a single hole in each microcavity. Thus, by varying the 

sheet density of holes and the concentration of the oligonucleotides, a number of versions were 

realised to involve a single hole and single oligonucleotide in one microcavity. If the number of 

holes in the edge channel determined by p2D is considered (see the Methods Summary for 

details), then p=120, and the self-mode frequency f is determined to be equal to 2.2 THz from the 

resonant value of the drain-source current of 43.8 µA (Fig. 

2a).

 
Figure 2| Uxx-Ids and Uxy-Ids characteristics. The Uxx-Ids (a) and Uxy-Ids (b) characteristics of the silicon nanosandwich without 
(blue) and with (green) 100-mer oligonucleotides. Measurements were performed at room temperature under the 
stabilization of the drain-source current. 

In contrast, the Ids steps can be interpreted within the framework of the Josephson light 

emitting diode model
20

. Specifically, the edge channel can be presented as the subsequence of 

tunnel junctions formed by the negative-U dipole boron centres, with the optimal gain and 

generation obtained using the matching relation of sheet density with the confinement specified 

by the formation of microcavities in the Si-QW plane. Thus, the resonant frequencies caused by 

the tunnelling holes through the dipole boron centres and the oligonucleotide self-mode revealed 

by the feedback mechanism appear to result from the well-known relation
21

 f=2eUxx/h. Among 

the three resonant frequencies shown in Fig. 2A, the side features that demonstrate the negative 

differential resistance, i.e., 2.7 and 7.9 THz, are related to the Rabi splitting induced by the 

strong coupling between the tunnelling junction and microcavity modes. In contrast, the central 

positive differential resistance response indicates an oligonucleotide self-mode frequency of 2.8 

THz, as revealed by the feedback mechanism. Thus, the two different approaches for the analysis 

of the Uxx-Ids measurements are found to be in good agreement. 

The same model is used for the analysis of both the Uxx-Ids and Uxy-Ids characteristics 

because the conductance of the silicon nanosandwich is caused by the formation of the edge 

channels. Therefore, the Uxy-Ids measurements are described by the relation f=2eUxy/h, which 

results from the counter fluxes of holes near the upper and lower delta barriers (Fig. 1d and 1e). 

This assumption is related to models of spin Hall effects caused by the presence of the 

topological edge channels
22

 and is supported by the affinity of the Uxx-Ids and Uxy-Ids 

dependencies (see Figs. 2a and 2b). The frequency values derived from the Uxy-Ids characteristics 

are close to the above observations if the difference in length between the xx distance and the ds 

contact is considered. 

Using the suggested technique, the comparison of the self-modes corresponding to the 

oligonucleotides of different lengths is rather intriguing. The resonant frequencies derived from 

the dUxx/dIds and dUxy/dIds dependencies on the Ids value appear to be significantly different for 

the 100- and 50-mer oligonucleotides (see Figs. 3a, 3b and 3c). This behaviour can be explained 



by the presence of a more complex relation between the self-resonant frequency and 

oligonucleotide lengths than provided by string resonance phenomena. Moreover, the data shown 

in Figs. 3a, 3b and 3c evidence about direct proportionality of the self-resonant frequency and 

the oligonucleotide length. 

 
Figure 3 | Derivatives of Uxx-Ids and Uxy-Ids characteristics. The Uxx derivatives corresponding to 100-mer (a) and 50-mer (b) 
oligonucleotides. c, The Uxy derivatives corresponding to buffer solution (blue), 100-mer (dark green), and 50-mer (light 
green) oligonucleotides. 

In this study, we demonstrate how a semiconductor nanostructure-based quantum pump 

device can be used as the sensing element for oligonucleotide detection systems. Experimental 

data in the section above correspond to the previous studies of oligonucleotides
11,12

 and 

semiconductor nanostructures used in this research
18,23

. The quantum pump sensing techniques 

allow us to identify the self-modes of oligonucleotides. The resonant modes of the 

oligonucleotides were determined by analysing the Uxx-Ids and Uxy-Ids characteristics of the 

silicon nanosandwich with oligonucleotides deposited on its surface. All of the measurements 

were performed at room temperature in a sodium acetate buffer solution. The next step of this 

research is expected to provide a proper understanding of monomer and dimer molecule sensing. 

We anticipate that this novel approach will enable both the creation of new methods of label-

free, real-time detection of nucleic acids and the modernisation of existing methods.  

 

METHODS SUMMARY 

Silicon nanosandwich preparation. The devices are based on an ultra-narrow, 2 nm, high-

mobility p-type Si-QW confined by delta barriers heavily doped with boron
24

 (5×10
21 

cm
-3

) on 

the n-type Si (100) surface
25

. These p-type Si-QWs are prepared on the n-type Si (100) wafers 

during the preliminary oxidation and subsequent short-time diffusion of boron by the CVD 

method
24,26,28,29

. The boron atoms have been shown to form trigonal dipole (B+ - B-) centres due 

to the negative-U reaction: 2B
o
 → B

+
 + B

- 26,27
. The conductance within the Si-QW is provided 

by the edge channels
30

. The sheet density of the holes has been determined by Hall-effect 

studies
18

 to be 3×10
13 

m
-2

. Thus, there are 120 holes (p) in the edge channels. The system of 



microcavities has been formed on the surface of the silicon nanosandwich such that only a single 

hole and single oligonucleotide exist in one microcavity. 

Microfluidic system. The container-type microfluidic system was constructed using 

polydimethylsiloxane. It is placed on the silicon nanosandwich surface and holds the 0.5 ml drop 

of solution, preventing it from evaporating. Each solution drop was deposited on the surface 

using a Proline plus Biohit 0.1-3 µl micropipette. 

Oligonucleotide preparation. Single-stranded oligonucleotides were synthesised using Applied 

Biosystems synthesising equipment, purified with polyacrylamide gel electrophoresis, and 

extracted in a 0.3 M sodium acetate solution. The investigated sequences were 100 bp 5’-

gcgctggctgcgggcggtgagctgagctcgcccccggggagctgtggccggcgcccctgccggttccctgagcagcggacgttcatgc

tgggagggcggcg-3’ and 50 bp 5’-gcgctggctgcgggcggtgagctgagctcgcccccggggagctgtggccg-3’. The 

concentrations were 0.22 and 0.98 µg/µl, respectively. These concentrations were chosen to fit 

the concentration of holes in the edge channels.  

U-I measurement circuit. The Uxx-Ids and Uxy-Ids measurement circuit consists of a DC source 

(Keithley 6221), Uxx and Uxy nanovoltmeters (Keithley 2182A), and the earthed metal capsule 

containing the chip holder. The system is synchronised using the National Instruments Lab View 

software package. The range of the driving DC drain-source current is (-50 – 50 µA), and the 

interval between the measured points is 100 nA. Each point was measured 10 times at a 1 ms 

interval. 
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