Skip to main content
Log in

Heat-Treatment Induced Magnetic Anisotropy of GaMnSb Films

  • Order, Disorder, and Phase Transition in Condensed System
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Conditions and mechanisms of controlled variation of the magnetic anisotropy of GaMnSb films containing magnetic MnSb nanoinclusions by means of heat treatment have been determined. For this purpose, the temperature and magnetic-field dependences of the magnetic moments of samples before and after thermal annealing were measured using a SQUID magnetometer. It is established that the heat treatment of GaMnSb films leads to a significant increase in the values of characteristics determined by the magnetic anisotropy, including the growth of blocking temperature (from 95 to 390 K) and the magnetic anisotropy field (from 330 to 630 Oe). Results of transmission electron microscopy investigation indicate that a change in the magnetic anisotropy of GaMnSb films as a result of their thermal annealing can be related to a transition of the crystalline structure of magnetic MnSb nanoinclusions from hexagonal (space group P62/mmc) to cubic (space group F-43m).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. N. Hai, S. Ohya, M. Tanaka, et al., Nature (London, U.K.) 458, 489 (2009).

    Article  ADS  Google Scholar 

  2. V. V. Rylkov, B. A. Aronzon, Yu. A. Danilov, Yu. N. Drozdov, V. P. Lesnikov, K. I. Maslakov, and V. V. Podol’ski, J. Exp. Theor. Phys. 100, 742 (2005).

    Article  ADS  Google Scholar 

  3. F. Matsukura, E. Abe, and H. Ohno, J. Appl. Phys. 87, 6442 (2000).

    Article  ADS  Google Scholar 

  4. F. Matsukura, E. Abe, Y. Ohno, et al., Appl. Surf. Sci. 159–160, 265 (2000).

    Article  Google Scholar 

  5. E. Abe, F. Matsukura, H. Yasuda, et al., Phys. E (Amsterdam, Neth.) 7, 981 (2000).

    Article  Google Scholar 

  6. A. D. Talantsev, O. V. Koplak, and R. B. Morgunov, Phys. Solid State 57, 322 (2015).

    Article  ADS  Google Scholar 

  7. O. V. Koplak, A. A. Polyakov, A. B. Davydov, R. B. Morgunov, A. D. Talantsev, A. V. Kochura, I. V. Fedorchenko, O. A. Novodvorskii, L. S. Parshina, O. D. Khramova, A. V. Shorokhova, and B. A. Aronzon, J. Exp. Theor. Phys. 120, 1012 (2015).

    Article  ADS  Google Scholar 

  8. A. I. Dmitriev, A. D. Talantsev, O. V. Koplak, et al., J. Appl. Phys. 119, 073905 (2016).

    Article  ADS  Google Scholar 

  9. A. I. Dmitriev and A. A. Filatov, Phys. Solid State 59, 1734 (2017).

    Article  ADS  Google Scholar 

  10. S. F. Marenkin, O. A. Novodvorsky, A. V. Shorokhova, A. B. Davydov, B. A. Aronzon, A. V. Kochura, I. V. Fedorchenko, O. D. Khramova, and A. V. Timofeev, Inorg. Mater. 50, 897 (2014).

    Article  Google Scholar 

  11. A. A. Lotin, O. A. Novodvorsky, L. S. Parshina, et al., Appl. Phys. B 104, 565 (2011).

    Article  ADS  Google Scholar 

  12. M. Cardona and G. Untherodt, Light Scattering in Solids (Springer, Berlin, 1983), p. 96.

    Book  Google Scholar 

  13. G. Yang, F. Zhu, and S. Dong, J. Cryst. Growth 316, 145 (2011).

    Article  ADS  Google Scholar 

  14. J. E. Maslar, W. S. Hurst, and C. A. Wang, J. Appl. Phys. 103, 013502 (2008).

    Article  ADS  Google Scholar 

  15. M. R. Islam, N. F. Chen, and M. Yamada, Cryst. Res. Technol. 43, 1091 (2008).

    Article  Google Scholar 

  16. Yu. A. Danilov, B. N. Zvonkov, A. V. Kudrin, O. V. Vikhrova, S. M. Plankina, V. S. Dunaev, A. V. Nezhdanov, Yu. N. Drozdov, and M. V. Sapozhnikov, Bull. Russ. Acad. Sci.: Phys. 76, 171 (2012).

    Article  Google Scholar 

  17. S. G. Kim, H. Asahi, M. Seta, et al., J. Appl. Phys. 74, 579 (1993).

    Article  ADS  Google Scholar 

  18. S. Winnerl, S. Sinning, T. Dekorsy, et al., Appl. Phys. Lett. 85, 3092 (2004).

    Article  ADS  Google Scholar 

  19. V. Seshi Bai and K. V. S. Rama Rao, J. Appl. Phys. 55, 2167 (1984).

    Article  ADS  Google Scholar 

  20. T. Okita and Y. Makino, J. Phys. Soc. Jpn. 25, 120 (1968).

    Article  ADS  Google Scholar 

  21. E. F. Kneller and F. E. Luborsky, J. Appl. Phys. 34, 656 (1963).

    Article  ADS  Google Scholar 

  22. G. Markandeyulu and K. V. S. Rama Rao, J. Magn. Magn. Mater. 67, 215 (1987).

    Article  ADS  Google Scholar 

  23. S. Basu and T. Adhikari, J. Alloys Compd. 205, 81 (1994).

    Article  Google Scholar 

  24. H. Nagasaki, I. Wakabayashi, and S. Minomura, J. Phys. Chem. Solids 30, 329 (1969).

    Article  ADS  Google Scholar 

  25. N. A. Goryunova and N. N. Fedorova, Zh. Tekh. Fiz. 25, 1339 (1955).

    Google Scholar 

  26. S. T. Weir, Y. K. Vohra, and A. L. Ruoff, Phys. Rev. B 36, 4543 (1987).

    Article  ADS  Google Scholar 

  27. J. C. Jamieson, Science (Washington, DC, U. S.) 139, 845 (1963).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. I. Dmitriev.

Additional information

Original Russian Text © A.I. Dmitriev, A.V. Kochura, A.P. Kuz’menko, L.S. Parshina, O.A. Novodvorskii, O.D. Khramova, E.P. Kochura, A.L. Vasil’ev, B.A. Aronzon, 2018, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2018, Vol. 154, No. 3, pp. 613–620.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dmitriev, A.I., Kochura, A.V., Kuz’menko, A.P. et al. Heat-Treatment Induced Magnetic Anisotropy of GaMnSb Films. J. Exp. Theor. Phys. 127, 525–531 (2018). https://doi.org/10.1134/S1063776118090145

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776118090145

Navigation