Skip to main content
Log in

Effect of dielectric confinement on optical properties of colloidal nanostructures

  • Special issue in honor of L.V. Keldysh’s 85th birthday Issue Editor: S. Tikhodeev
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

We review the effects caused by a large difference in the dielectric constants of a semiconductor and its surrounding in colloidal semiconductor nanostructures (NSs) with various shapes, e.g., nanocrystals, nanorods, and nanoplatelets. The difference increases the electron–hole interaction and consequently the exciton binding energy and its oscillator transition strength. On the other hand, this difference reduces the electric field of a photon penetrating the NS (the phenomenon is called the local field effect) and reduces the photon coupling to an exciton. We show that the polarization properties of the individual colloidal NSs as well as of their randomly oriented ensemble are determined both by the anisotropy of the local field effect and by the symmetry of the exciton states participating in optical transitions. The calculations explain the temperature and time dependences of the degree of linear polarization measured in an ensemble of CdSe nanocrystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. V. Keldysh, JETP Lett. 29, 658 (1979).

    ADS  Google Scholar 

  2. N. S. Rytova, Vestn. Mosk. Univ., No. 3, 30 (1967).

    Google Scholar 

  3. V. S. Babichenko, L. V. Keldysh, and A. P. Silin, Sov. Phys. Solid State 22, 723 (1980).

    Google Scholar 

  4. L. V. Keldysh, Superlatt. Microstruct. 4, 637 (1988).

    Article  ADS  Google Scholar 

  5. L. V. Keldysh, Phys. Status Solidi A 164, 3 (1997).

    Article  ADS  Google Scholar 

  6. N. A. Gippius, S. G. Tikhodeev, V. D. Kulakovskii, and A. Forchel, JETP Lett. 59, 556 (1994).

    ADS  Google Scholar 

  7. D. Kovalev, M. Ben Chorin, J. Diener, et al., Appl. Phys. Lett. 67, 1585 (1995).

    Article  ADS  Google Scholar 

  8. D. Kovalev, B. Averboukh, M. Ben Chorin, et al., Phys. Rev. Lett. 77, 2089 (1996).

    Article  ADS  Google Scholar 

  9. S. A. Gavrilov, V. V. Gusev, V. S. Dneprovskii, et al., JETP Lett. 70, 216 (1999).

    Article  ADS  Google Scholar 

  10. E. A. Muljarov, E. A. Zhukov, V. S. Dneprovskii, and Y. Masumoto, Phys. Rev. B 62, 7420 (2000).

    Article  ADS  Google Scholar 

  11. A. Shabaev and Al. L. Efros, Nano Lett. 4, 1821 (2004).

    Article  ADS  Google Scholar 

  12. A. C. Bartnik, Al. L. Efros, W.-K. Koh, C. B. Murray, and F. W. Wise, Phys. Rev. B 82, 195313 (2010).

    Article  ADS  Google Scholar 

  13. J. S. Kamal, R. Gomes, Z. Hens, et al., Phys. Rev. B 85, 035126 (2012).

    Article  ADS  Google Scholar 

  14. R. Benchamekh, N. A. Gippius, J. Even, et al., Phys. Rev. B 89, 035307 (2014).

    Article  ADS  Google Scholar 

  15. A. W. Achtstein, A. Schliwa, A. Prudnikau, et al., Nano Lett. 12, 3151 (2012).

    Article  Google Scholar 

  16. S. Schmitt–Rink, D. A. B. Miller, and D. S. Chemla, Phys. Rev. B 35, 8113 (1987).

    Article  ADS  Google Scholar 

  17. E. Yablonovitch, T. G. Gmitter, and R. Bhat, Phys. Rev. Lett. 61, 2546 (1988).

    Article  ADS  Google Scholar 

  18. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 8: Electrodynamics of Continuous Media (Pergamon, Oxford, 1960).

    MATH  Google Scholar 

  19. N. A. Gippius, E. A. Muljarov, J. Rubio, et al., Phys. Status Solidi A 188, 269 (1995).

    Article  Google Scholar 

  20. P. Ils, Ch. Greus, A. Forchel, et al., Phys. Rev. B 51, 4272 (1995).

    Article  ADS  Google Scholar 

  21. Al. L. Efros, Phys. Rev. B 46, 7448 (1992).

    Article  ADS  Google Scholar 

  22. M. Chamarro, C. Gourdon, P. Lavallard, O. Lublinskaya, and A. I. Ekimov, Phys. Rev B 53, 1336 (1996).

    Article  ADS  Google Scholar 

  23. Al. L. Efros, in Semiconductor Metal Nanocrystals: Synthesis and Electronic and Optical Properties, Ed. by V. I. Klimov (Marcel Dekker, New York, 2003), Chap. 3, p. 103.

  24. B. Siebers, L. Biadala, D. R. Yakovlev, et al., Phys. Rev. B 91, 155304 (2015).

    Article  ADS  Google Scholar 

  25. Al. L. Efros, M. Rosen, B. Averboukh, et al., Phys. Rev. B 56, 3875 (1997).

    Article  ADS  Google Scholar 

  26. L. V. Kulik, V. D. Kulakovskii, M. Bayer, et al., Phys. Rev. B 54, R2335 (1996).

    Article  ADS  Google Scholar 

  27. N. A. Gippius, A. L. Yablonskii, A. B. Dzyubenko, et al., J. Appl. Phys. 83, 5410 (1998).

    Article  ADS  Google Scholar 

  28. E. A. Muljarov, S. G. Tikhodeev, N. A. Gippius, and T. Ishihara, Phys. Rev. B 51, 14370 (1995).

    Article  ADS  Google Scholar 

  29. L. E. Brus, J. Chem. Phys. 79, 5566 (1983).

    Article  ADS  Google Scholar 

  30. L. E. Brus, J. Chem. Phys. 80, 4404 (1984).

    Article  ADS  Google Scholar 

  31. T. Takagahara, Phys. Rev. B 39, 10206 (1989).

    Article  ADS  Google Scholar 

  32. G. B. Grigoryan, A. V. Rodina, and Al. L. Efros, Sov. Phys. Solid State 32, 2037 (1990).

    Google Scholar 

  33. T. Takagahara, Phys. Rev. B 47, 4569 (1993).

    Article  ADS  Google Scholar 

  34. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).

    MATH  Google Scholar 

  35. V. V. Batygin and I. N. Toptygin, Collection of Problems in Electrodynamics, 3rd ed. (Nauka, Moscow, 1970).

    Google Scholar 

  36. L. Banyai, P. Gilliot, Y. Z. Hu, and S. W. Koch, Phys. Rev. B 45, 14136 (1992).

    Article  ADS  Google Scholar 

  37. Y. M. Niquet, C. Delerue, G. Allan, and M. Lannoo, Phys. Rev. B 65, 165334 (2002).

    Article  ADS  Google Scholar 

  38. L. Jdira, P. Liljeroth, E. Stoffels, D. Vanmaekelbergh, and S. Speller, Phys. Rev. B 73, 115305 (2006).

    Article  ADS  Google Scholar 

  39. K. A. Svit and K. S. Zhuravlev, J. Phys. Chem. C 119, 19496 (2015).

    Article  Google Scholar 

  40. S. Ithurria, M. D. Tessier, M. P. S. M. Lobo, B. Dubertret, and Al. L. Efros, Nature Mater. 10, 936 (2011).

    Article  ADS  Google Scholar 

  41. J. Even, L. Pedesseau, and M. Kepenekian, Phys. Chem. Chem. Phys. 16, 25182 (2014).

    Article  Google Scholar 

  42. L. Biadala, F. Liu, M. D. Tessier, et al., Nano Lett. 14, 1134 (2014).

    Article  ADS  Google Scholar 

  43. M. Olutas, B. Guzelturk, Y. Kelestemur, et al., ACS Nano 9, 5041 (2015).

    Article  Google Scholar 

  44. C. Delerue, M. Lannoo, and G. Allan, Phys. Rev. B 68, 115411 (2003).

    Article  ADS  Google Scholar 

  45. A. D. Yoffe, Adv. Phys. 42, 173 (1993).

    Article  ADS  Google Scholar 

  46. H. Haken, Z. Phys. 146, 527 (1957).

    Article  ADS  Google Scholar 

  47. J. Pollmann and H. Buettner, Phys. Rev. B 16, 4480 (1977).

    Article  ADS  Google Scholar 

  48. S. V. Goupalov, Phys. Rev. B 68, 125311 (2003).

    Article  ADS  Google Scholar 

  49. A. N. Poddubny, J. Opt. 17, 035102 (2015).

    Article  ADS  Google Scholar 

  50. K. K. Pukhov, T. T. Basiev, and Y. V. Orlovskii, JETP Lett. 88, 12 (2008).

    Article  ADS  Google Scholar 

  51. V. S. Dneprovskii, E. A. Zhukov, O. A. Shalygina, V. L. Lyaskovski, E. A. Muljarov, S. A. Gavrilov, and Y. Masumoto, J. Exp. Theor. Phys. 94, 1169 (2002).

    Article  ADS  Google Scholar 

  52. J. Wang, M. S. Gudiksen, X. Duan, Yi Cui, and Ch.M. Lieber, Science 293, 1455 (2001).

    Article  ADS  Google Scholar 

  53. P. Lavallard and R. A. Suris, Solid State Commun. 95, 267 (1995).

    Article  ADS  Google Scholar 

  54. Al. L. Efros and W. R. L. Lambrecht, Phys. Rev. B 89, 035304 (2014).

    Article  ADS  Google Scholar 

  55. D. Spirkoska, Al. L. Efros, W. R. L. Lambrecht, et al., Phys. Rev. B 85, 045309 (2012).

    Article  ADS  Google Scholar 

  56. N. Le Thomas, E. Herz, O. Schöps, U. Woggon, and M. V. Artemyev, Phys. Rev. Lett. 94, 016803 (2005).

    Article  ADS  Google Scholar 

  57. J. T. Hu, L. S. Li, W. D. Yang, et al., Science 292, 2060 (2001).

    Article  Google Scholar 

  58. S. A. Crooker, T. Barrick, J. A. Hollingsworth, and V. I. Klimov, Appl. Phys. Lett. 82, 2793 (2003).

    Article  ADS  Google Scholar 

  59. D. B. Tice, D. J. Weinberg, N. Mathew, R. P. H. Chang, and E. A. Weiss, J. Phys. Chem. C 117, 13289 (2013).

    Article  Google Scholar 

  60. F. Pisanello, L. Martiradonna, P. Spinicelli, et al., Superlatt. Microstruct. 47, 165 (2010).

    Article  ADS  Google Scholar 

  61. B. T. Diroll, A. Koschitzky, and Ch. B. Murray, J. Phys. Chem. Lett. 5, 85 (2014).

    Article  Google Scholar 

  62. S. Vezzoli, M. Manceau, G. Lemenager, et al., ACS Nano 9, 7992 (2015).

    Article  Google Scholar 

  63. C. Lethiec, F. Pisanello, L. Carbone, A. Bramati, L. Coolen, and A. Maitre, New J. Phys. 16, 093014 (2014).

    Article  ADS  Google Scholar 

  64. C. Lethiec, J. Laverdant, H. Vallon, et al., Phys. Rev. X 4, 021037 (2014).

    Google Scholar 

  65. I. Chung, K. T. Shimizu, and M. G. Bawendi, Proc. Natl. Acad. Sci. USA 100, 405 (2003).

    Article  ADS  Google Scholar 

  66. S. A. Empedocles, R. Neuhauser, and M. G. Bawendi, Nature 399, 126 (1999).

    Article  ADS  Google Scholar 

  67. A. G. del Aguila, B. Jha, F. Pietra, et al., ACS Nano 8, 5921 (2014).

    Article  Google Scholar 

  68. A. Rodina and Al. L. Efros, Nano Lett. 15, 4214 (2015).

    Article  ADS  Google Scholar 

  69. A. Rodina and Al. L. Efros, private communication.

  70. M. G. Bawendi, P. J. Carroll, W. L. Wilson, and L. E. Brus, J. Chem. Phys. 96, 946 (1992).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Rodina.

Additional information

Contribution for the JETP special issue in honor of L.V. Keldysh’s 85th birthday

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodina, A.V., Efros, A.L. Effect of dielectric confinement on optical properties of colloidal nanostructures. J. Exp. Theor. Phys. 122, 554–566 (2016). https://doi.org/10.1134/S1063776116030183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776116030183

Keywords

Navigation