Skip to main content
Log in

Vibrational excitation of a molecule by a resonance current

  • Atoms, Molecules, Optics
  • Published:
Journal of Experimental and Theoretical Physics Aims and scope Submit manuscript

Abstract

Correct expressions are obtained for calculating a tunnel-resonance current through molecules. The participation of molecular vibrations in the resonance charge transfer through a molecule and vibrational excitation of the molecule are determined by the reorganization energy E r of the vibrational system depending on the displacement of the equilibrium position of vibrational modes in passing from the neutral molecule to the resonance state of a molecular ion. The mean excitation energy of the molecule during the propagation of an elementary charge changes from E r at the voltage across electrodes close to the threshold up to 2E r at voltages considerably exceeding the threshold voltage. An expression is obtained for the stationary vibrational temperature of the molecule, which is proportional to the resonance current.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Nitzan and M. A. Ratner, Science (Washington) 300, 1384 (2003).

    Article  ADS  Google Scholar 

  2. N. J. Tao, Nat. Nanotechnol. 1, 173 (2006).

    Article  ADS  Google Scholar 

  3. S. Karthänser, J. Phys.: Condens. Matter 23, 013001 (2011).

    Article  ADS  Google Scholar 

  4. Z. L. Gasina, G. M. Morales, A. Sanchez, and L. Yu, Chem. Phys. Lett. 417, 401 (2006).

    Article  ADS  Google Scholar 

  5. I. I. Oleynik, M. A. Kozhushner, V. S. Posvyanskii, and L. Yu, Phys. Rev. Lett. 96, 096803 (2006).

    Article  ADS  Google Scholar 

  6. T. Albrecht, K. Moth-Poulsen, J. B. Christensen, J. Hjelm, T. Bjornholm, and J. Ulstrup, J. Am. Chem. Soc. 128, 6574 (2006).

    Article  Google Scholar 

  7. F. Chen, J. Hihath, Z. Huang, X. Li, and N. J. Tao, Annu. Rev. Phys. Chem. 58, 535 (2007).

    Article  ADS  Google Scholar 

  8. P. K. Hansma, Tunneling Spectroscopy: Capabilities, Applications, and New Techniques (Plenum, New York, 1982).

    Google Scholar 

  9. F. Dalidchik, M. Grishin, N. Kolchenko, and S. Kovalevskii, Surf. Sci. 387, 50 (1997).

    Article  ADS  Google Scholar 

  10. M. V. Grishin, F. I. Dalidchik, S. A. Kovalevskii, N. N. Kolchenko, and B. R. Shub, JETP Lett. 66(1), 37 (1998).

    Article  ADS  Google Scholar 

  11. M. Galperin, M. A. Ratner, and A. Nitzan, J. Phys.: Condens. Matter 19, 103201 (2007).

    Article  ADS  Google Scholar 

  12. P. I. Arseev and N. S. Maslova, Phys.—Usp. 53(11), 1151 (2010).

    Article  ADS  Google Scholar 

  13. Y. Dubi and M. Di Ventra, Rev. Mod. Phys. 83, 131 (2011).

    Article  ADS  Google Scholar 

  14. L. Adamska, M. A. Kozhushner, and I. I. Oleynik, Phys. Rev. B: Condens. Matter 80, 108947 (2010).

    Google Scholar 

  15. S. Datta, Quantum Transport: From Atom to Transistor (Cambridge University Press, Cambridge, 2005).

    Book  MATH  Google Scholar 

  16. M. A. Kozhushner, V. S. Posvyanskii, and I. I. Oleynik, Chem. Phys. 319, 368 (2005).

    Article  ADS  Google Scholar 

  17. A. A. Abrikosov, L. P. Gor’kov, and I. E. Dzyaloshinskii, Quantum Field Theoretical Methods in Statistical Physics (Fizmatlit, Moscow, 1962; Pergamon, Oxford, 1965).

    Google Scholar 

  18. O. V. Gritsenko, B. Braïda, and E. J. Baerends, J. Chem. Phys. 119, 1937 (2003).

    Article  ADS  Google Scholar 

  19. Yu. Dahnovsky, V. G. Zakrzewski, A. Kletsov, and J. V. Ortiz, J. Chem. Phys. 123, 184711 (2005).

    Article  ADS  Google Scholar 

  20. M. P. Samanta, W. Tian, S. Datta, J. I. Henderson, and C. P. Kubiak, Phys. Rev. B: Condens. Matter 53, R7626 (1996).

    Article  ADS  Google Scholar 

  21. G.-C. Liang and A. W. Ghosh, Phys. Rev. Lett. 95, 078403 (2005).

    Google Scholar 

  22. C. Toher and S. Sanvito, Phys. Rev. B: Condens. Matter 99, 056801 (2007).

    ADS  Google Scholar 

  23. J. Taylor, M. Brandbyge, and K. Stokbro, Phys. Rev. B: Condens. Matter 68, 121101 (2003).

    Article  ADS  Google Scholar 

  24. D. Natelson, L. H. Yu, J. W. Ciszek, Z. K. Keane, and J. M. Tour, Chem. Phys. 324, 267 (2006).

    Article  ADS  Google Scholar 

  25. J. P. Bergfield and C. A. Stafford, Phys. Rev. B: Condens. Matter 79, 245125 (2009).

    Article  ADS  Google Scholar 

  26. D. I. Bolgov, M. A. Kozhushner, R. R. Muriasov, and V. S. Posvianskii, J. Chem. Phys. 119, 3871 (2003).

    Article  ADS  Google Scholar 

  27. M. Galperin and A. Nitzan, Ann. New York Acad. Sci. 1006, 48 (2003).

    Article  ADS  Google Scholar 

  28. M. Galperin, A. Nitzan, and M. A. Ratner, Phys. Rev. B: Condens. Matter 73, 045314 (2006).

    Article  ADS  Google Scholar 

  29. S. I. Pekar, Zh. Eksp. Teor. Fiz. 20, 50 (1950).

    Google Scholar 

  30. Huang Kun and A. Rys, Proc. R. Soc. London, Ser. A 204, 406 (1950).

    Article  ADS  MATH  Google Scholar 

  31. R. Kubo and I. Toyozawa, Prog. Theor. Phys. 13, 160 (1955).

    Article  ADS  MATH  Google Scholar 

  32. A. M. Kuznetsov, Charge Transfer in Physics, Chemistry, and Biology (Gordon and Breach, New York, 1995).

    Google Scholar 

  33. Yu. E. Perlin, Sov. Phys.—Usp. 6, 542 (1963).

    Article  MathSciNet  ADS  Google Scholar 

  34. R. Marcus, J. Phys. Chem. 24,966, 979 (1956).

    Google Scholar 

  35. M. A. Kozhushner, in Physico-Chemical Phenomena in Thin Films and at Solid Surfaces, Ed. by L. I. Trakhtenberg, S. H. Lin, and O. J. Ilegbusi (Elsevier, Amsterdam, 2007), Vol. 34, Chap. 2.

    Google Scholar 

  36. I. Diez-Perz, J. Hihath, Y. Lee, L. Yu, L. Adamska, M. A. Kozhushner, I. I. Oleynik, and N. Tao, Nat. Chem. 1, 635 (2009).

    Article  Google Scholar 

  37. F. I. Dalidchik, Sov. Phys. JETP 60(4), 795 (1984).

    Google Scholar 

  38. Z. Ioffe, T. Shamai, A. Ophir, G. Noy, I. Yutsis, K. Kfir, O. Cheshnovsky, and Y. Selzer, Nat. Nanotechnol. 3, 727 (2008).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kozhushner.

Additional information

Original Russian Text © M.A. Kozhushner, I.I. Oleinik, 2012, published in Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2012, Vol. 142, No. 5, pp. 862–872.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kozhushner, M.A., Oleinik, I.I. Vibrational excitation of a molecule by a resonance current. J. Exp. Theor. Phys. 115, 759–768 (2012). https://doi.org/10.1134/S1063776112100056

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063776112100056

Keywords

Navigation