Skip to main content
Log in

Size control and structure features of spherical calcium carbonate particles

  • Nanomaterials, Ceramics
  • Published:
Crystallography Reports Aims and scope Submit manuscript

Abstract

The size of porous spherical calcium carbonate particles obtained by precipitation from a supersaturated solution has been controlled using bovine serum albumin as an organic additive and ethylene glycol and glycerol as cosolvents of the reaction mixture. The structural aspects of the formation of these particles, which affect the possibility of controlling their sizes, are considered. Highly porous vaterite particles with an average size of about 500 nm have been obtained by adding ethylene glycol and glycerol to the reaction mixture and agitation for no less than 30 min. It is shown that particles are formed as a result of the attachment of vaterite nanocrystallites, the shape of which is anisotropic and can be described by a biaxial ellipsoid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Devenney, M. Fernandez, and S. O. Morgan, Application for patent WO No. 2013165600 (2013).

    Google Scholar 

  2. W. J. Wilson and A. L. Porter, Patent US No. 6132696 (2000).

    Google Scholar 

  3. D. B. Trushina, T. V. Bukreeva, M. V. Kovalchuk, et al., Mater. Sci. Eng. C 45, 644 (2014).

    Article  Google Scholar 

  4. M. Ma and R. Sun, Advanced Biomimetics (Rijeka: InTech, 2011), p. 372.

    Google Scholar 

  5. J. Nakamura, G. Poologasundarampillai, J. R. Jones, et al., J. Mater. Chem. 1 (35), 4446 2013.

    Article  Google Scholar 

  6. H. Ohgushi, M. Okumura, T. Yoshikawa, et al., J. Biomed. Mater. Res. 26 (7), 885 1992.

    Article  Google Scholar 

  7. Y. Ueno, H. Futagawa, Y. Takagi, et al., J. Controlled Release 103 (1), 93 2005.

    Article  Google Scholar 

  8. W. Wei, G.-H. Ma, G. Hu, et al., J. Am. Chem. Soc. 130 (47), 15808 (2008).

    Article  Google Scholar 

  9. N. Qiu, H. Yin, B. Ji, et al., Mater. Sci. Eng. C 32 (8), 2634 2012.

    Article  Google Scholar 

  10. D. V. Volodkin, N. I. Larionova, and G. B. Sukhorukov, Biomacromolecules 5 (5), 1962 2004.

    Article  Google Scholar 

  11. A. I. Petrov, D. V. Volodkin, and G. B. Sukhorukov, Biotechnol. Prog. 21 (3), 918 2005.

    Article  Google Scholar 

  12. D. V. Volodkin, A. I. Petrov, M. Prevot, et al., Langmuir 20 (8), 3398 2004.

    Article  Google Scholar 

  13. A. A. Antipov, D. Shchukin, Y. Fedutik, et al., Colloids Surf. A 224 (1—3), 175 (2003).

    Article  Google Scholar 

  14. H. Cölfen and L. Qi, Chemistry (Easton). 7 (1), 106 2001.

    Google Scholar 

  15. T. V. Bukreeva, I. V. Marchenko, T. N. Borodina, et al., Dokl. Akad. Nauk 440 (2), 191 2011.

    Google Scholar 

  16. T. F. Hatch, Bacteriol Rev. 25 (3), 237 1961.

    MathSciNet  Google Scholar 

  17. C.-L. Yao, W.-H. Xu, A.-M. Ding, et al., J. Chem. Sci. 121 (1), 89 2009.

    Article  Google Scholar 

  18. F. Manoli and E. Dalas, J. Cryst. Growth 218 (2—4), 359 (2000).

    Article  ADS  Google Scholar 

  19. X. Wang, C. Wu, K. Tao, et al., J. Phys. Chem. B 114 (16), 5301 2010.

    Article  Google Scholar 

  20. J. Saikia, B. Saha, and G. Das, R. Soc. Chem. Adv. 2 (26), 10015 (2012).

    Google Scholar 

  21. Q. Li, Y. Ding, F. Li, et al., J. Cryst. Growth 236 (1—3), 357 (2002).

    Article  ADS  Google Scholar 

  22. B. V. Parakhonskiy, A. Haase, and R. Antolini, Angew. Chem. Int. Ed. 51 (5), 1195 2012.

    Article  Google Scholar 

  23. E. M. Flaten, M. Seiersten, and J.-P. Andreassen, J. Cryst. Growth 311 (13), 3533 2009.

    Article  ADS  Google Scholar 

  24. D. M. Carmencita, S. Corneliu, I. Raluca, et al., Conf. Thes. “18-th International Symposium on Industrial Crystallization,” Zurich, September 13—16, 2011, p. 4.

    Google Scholar 

  25. S. R. Kamhi, Acta Crystallogr. 16, 770 (1963).

    Article  Google Scholar 

  26. H. J. Meyer, Z. Kristallogr. 128, 183 (1969).

    Article  Google Scholar 

  27. A. Le Bail, S. Ouhenia, and D. Chateigner, Powder Diffr. 26 (1), 16 2011.

    Article  ADS  Google Scholar 

  28. H. J. Meyer, Angew. Chem. 71, 673 (1959).

    Google Scholar 

  29. U. Wehrmeister, A. L. Soldati, D. E. Jacob, et al., J. Raman. Spectrosc. 41, 193 (2010).

    Google Scholar 

  30. R. Demichelis, P. Raiteri, J. Gale, et al., Cryst. Eng. Commun. 14 (1), 44 2012.

    Article  Google Scholar 

  31. E. Mugnaioli, I. Andrusenko, T. Schüler, et al., Angew. Chemie Int. Ed. 51 (28), 7041 2012.

    Article  Google Scholar 

  32. L. Kabalah-Amitai, B. Mayzel, Y. Kauffmann, et al., Science 340 (6131), 454 2012.

    Google Scholar 

  33. R. D. R. Demichelis, P. Raiteri, and J. Gale, Cryst. Growth Des. 13 (6), 2247 2012.

    Article  Google Scholar 

  34. S. N. Sulyanov, A. N. Popov, and D. M. Kheiker, J. Appl. Crystallogr. 27, 934 (1994).

    Article  Google Scholar 

  35. J. Rodriguez-Carvajal, Program FullProf; http: //www.ill.eu/sites/fullprof

  36. J.-P. Andreassen, E. M. Flaten, R. Beck, et al., Chem. Eng. Res. 88 (9), 1163 2010.

    Article  Google Scholar 

  37. J.-P. Andreassen and M. J. Hounslow, Am. Inst. Chem. Eng. 50 (11), 2772 2004.

    Article  Google Scholar 

  38. N. Gehrke, H. Cölfen, N. Pinna, et al., Cryst. Growth Des. 5 (4), 1317 2005.

    Article  Google Scholar 

  39. P. Scardi, P. Leoni, and R. Delhez, J. Appl. Crystallogr. 37 (3), 381 2004.

    Article  Google Scholar 

  40. A. Katerinopoulou, T. Balic-Zunic, and L. F. Lundegaard, J. Appl. Crystallogr. 45 (1), 22 2012.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. B. Trushina.

Additional information

Original Russian Text © D.B. Trushina, S.N. Sulyanov, T.V. Bukreeva, M.V. Kovalchuk, 2015, published in Kristallografiya, 2015, Vol. 60, No. 4, pp. 625–633.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trushina, D.B., Sulyanov, S.N., Bukreeva, T.V. et al. Size control and structure features of spherical calcium carbonate particles. Crystallogr. Rep. 60, 570–577 (2015). https://doi.org/10.1134/S1063774515040227

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063774515040227

Keywords

Navigation