Skip to main content
Log in

Semiconductor nanowire sensors

  • Micro- and Nanoelectronic Devices
  • Published:
Russian Microelectronics Aims and scope Submit manuscript

Abstract

This article provides a description of the physical principles, design, and parameters of specific devices for chemical- and bio-sensing based on the change in the conduction of semiconductor nanowires caused by the surface charge of the studied object. Data concerning the sensitivity and selectivity of both single and matrix sensors are provided. This review also provides a description of biosensor autonomous power supply devices that use the energy of motion of a living organism

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brattein, W. and Bardin, Bell, Syst. Techn. J. 1953, 32, 1.

    Google Scholar 

  2. Rzhanov, A.V., Neizvestny, I.G., and Roslyakov, V.V., Study of surface conductivity and surface recombination in germanium samples, Zh. Tekh. Fiz., 1956, vol. 26, no. 10, pp. 2142–2153.

    Google Scholar 

  3. Rzhanov, A.V. and Neizvestny, I.G., On the affect of molecular adsorption on germanium on the parameters of the surface recombination cites, Fiz. Tverd. Tela, 1961, vol. 3, no. 11, pp. 3317–3323.

    Google Scholar 

  4. Novototskii-Vlasov, Yu.F. and Sinyukov, M.P., Effect of polar molecules absorption on the surface properties of germanium, Surface properties of semiconductors, Izd., AN SSSR., 1962, p. 69

  5. Neizvestny, I.G., On the affect of ether adsorption on the parameters of the surface recombination cites, Surface properties of semiconductors, Izd., AN SSSR., 1962, p. 78.

  6. Elektronnye yavleniya na poverkhnosti poluprovodnikov (Electronic Phenomena on Semiconductor Surfaces), Lyashenko, V.I., Ed., Kiev: Naukova dumka, 1968.

    Google Scholar 

  7. Rzhanov, A.V., Electronic Processes on Semiconductor Surfaces, Moscow: Nauka, 1971.

    Google Scholar 

  8. Kiselev, V.F., Adsorption Processes on the Surface of Semiconductors and Dielectrics, Moscow: Nauka, 1978.

    Google Scholar 

  9. Nanotekhnologii v poluprovodnikovoi tekhnologii (Nanaotochnology in semiconductor technology), Izd. SO RAN, 2004, p. 365.

  10. Wu, Yang P., Direct Observation Vapour-Liquid-Solid Nanowire Growth, J. Am. Chem. Soc., 2001, vol. 123, pp. 3165–3166.

    Article  Google Scholar 

  11. Wu, Y. et al., Controlled Growth and Structures of Molecular-Scale Si Nanowires, Nano Lett, 2004, vol. 4, pp. 433–439.

    Article  Google Scholar 

  12. Fan, Z., Chemical Sensing with ZnO Nanowire, IEEE Trasect. Nanotechnol, 2006, vol. 5, no. 4, pp. 393–396.

    Article  Google Scholar 

  13. Kamins, T.I. et al., Growth and Structure of Chemically Vapor Deposition Ge Nanowires on Si Substrate, Nano Lett, 2004, vol. 4, p. 503.

    Article  Google Scholar 

  14. Zakharov, N.D., Werner, P., Sokolov, L., and Gosele, U., Growth of Si Whiskers by MBE: Mechanism and peculiarities, Physica, E, 2007, vol. 37, no. 1–2, p. 148.

    Article  Google Scholar 

  15. Givargizov, E.I., Vapor Growth of Acicular and Platelike Crystals, Moscow: Nauka, 1977.

    Google Scholar 

  16. Lieber, C.M. and Wang, Z.L., Functional Nanowires, MRS Bulletin., 2007, vol. 32, pp. 99–107.

    Google Scholar 

  17. Smith, P.A. et al., Appl. Phys. Lett., 2000, vol. 77, p. 1399.

    Article  Google Scholar 

  18. Huang, Y. et al., Science, 2001, vol. 294, p. 1313.

    Article  Google Scholar 

  19. Whang, D. et al., Nano Lett, 2003, vol. 3, p. 1255.

    Article  Google Scholar 

  20. Patolsky, F. et al., Nanowire-Based Nanoelectronic Devices in the Life Science, MRS Bull, 2007, vol. 32, p. 142–149.

    Google Scholar 

  21. Cui, Yi., Wei, Q., Park, H., and Lieber, C.M., Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, 2001, vol. 293, p. 1289–1292.

    Article  Google Scholar 

  22. Soresten, M.H. et al., Screening Model for Nanowire Surface — Charge Sensors in Liquid, Appl. Phys. Lett., 2007, vol. 91, pp. 102–105.

    Google Scholar 

  23. Landheer D. et al., Calculation of tye response of fieldeffect transistors to charge biological molecules IEEE Sensors Jornal., Sept. 2007, vol. 7, no. 8.

  24. Popov, V.P. et al., Properties of Extremely Thin Silicon Layer in Silicon-On-Insulator Structure Formed by Smart-Cut Technology, J. Mat. Sci. Eng., B, 2000, vol. 73, pp. 82–86.

    Article  Google Scholar 

  25. Laws, G.M. et al., Molecular Control of the Drain Current in Bured Channel MOSFET, Phys. Stat. Sol., B, 2002, vol. 233, no. 1, pp. 83–89.

    Article  Google Scholar 

  26. Stern E. et al., Label-free immunodection with CMOS-compatible semiconductor nanowires., Nature, 2007, vol. 445, pp. 519–522.

    Article  Google Scholar 

  27. Zheng G. et al., Multiplexed electrical detection of canctr markers with nanowire sensor arrays., Nature biotechnology, 2005, vol. 23, no. 10.

  28. Nicolaides, M.G. et al., Silicon-On-Insulator Based Thin Film Resistor in Electrolyte Solution for Sensor Applications, J. Appl. Phys., 2004, vol. 95, no. 7, pp. 381–385.

    MathSciNet  Google Scholar 

  29. Wilchek, M., Bayer, E.A., Method, Enzymol., 1990, vol. 184, no. 49.

  30. Bagrov, D.V., Analytical characteristics and recognition elements of biosensors, Biosensor Academe, March, 30, 2008. http://www.biosensoracademy.com/rus/readarticle.php?article_id-7

  31. Enikolopov, R., Biochips., Zhurnal “Komp’yuterra”, 2000, no. 41, http://offline.computerra.ru/2000/370/5816.

  32. Sinyakov, A.N., Biochipy. Nauka Iz Pervykh Ruk, 2007, no. 5, pp. 41–49.

  33. Ham, D. and Westervelt, R., The Silicon That Moves and Feels Small Living Things, Mead Enginiring Courses. UC Santa Cruz. March, 2008, pp. 24–26.

  34. Shienle, M. et al., A Fully Electronic DNA Sensor with 128 Position and In-Pi-El A/D Conversion, ISSCC Dig. Tech. Papers., Feb, 2004, p. 220.

  35. Augustyniak, M. et al., A 24 × 16 CMOS-Based Chronocoulometric DNA Microarray, ISSCC Dig. Tech. Papers, Feb, 2006, p. 46.

  36. Esposti, C.S.D. et al., Fully Electronic CMOS DNA Detection Array Based on Capacitance Measurement with On-Chip Analog-Digital Conversation, ISSCC Dig. Tech. Papers. Feb 2006, p. 48.

  37. Pounthas, F. et al., DNA Detection on Transistor Arrays Following Mutation-Specific Enzimatic Amplification, Appl. Phys. Lett., 2004, vol. 84, no. 9, p. 1594

    Article  Google Scholar 

  38. Barbaro, M. et al., A CMOS, Fully Integrated for Electronic Detection of DNA Hibridization, IEEE Electron Dev. Lett., July 2006, vol. 27, no. 7, p. 595.

    Article  Google Scholar 

  39. Wang, Z.L. and Song, J., Piezoelectric Nanogenerators Based on ZnO Nanowire Arrays, Science, April 2006, vol. 312, no. 14, pp. 242–246.

    Article  Google Scholar 

  40. Wang, Z.L., Nanowires Promise Battery-Free Powering of Small Devices, Compaund semiconductor, 2007, vol. 13, no. 6, pp. 16–18.

    MATH  Google Scholar 

  41. Wang, X. et al., Direct-Current Nanogenerator Driven by Ultrasonic Waves, Science, April, 2007, vol. 316, no. 6, pp. 102–105.

    Article  Google Scholar 

  42. Naumova, O.V. et al., SOI nanowires as charge sesnors, Physica Sta. Sol., 2008.

  43. Vandysheva, N.V. et al., Silicon microchannel array for optical DNA-sensor, 15th symposium “Nanostructures: Physics and Technology”, Novosibirsk, Russia, June, 2007, p. 15.

  44. Romanov, S.I. et al., Silicon microchannel matrix for biochip technology, Nano- i Mikrosistemnaya Tekhnika, 2007, no. 96, pp. 55–60.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Neizvestny.

Additional information

Original Russian Text © I.G. Neizvestnii, 2009, published in Mikroelektronika, 2009, Vol. 38, No. 4, pp. 243–259.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neizvestny, I.G. Semiconductor nanowire sensors. Russ Microelectron 38, 223–238 (2009). https://doi.org/10.1134/S1063739709040015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063739709040015

PACS

Navigation