Skip to main content
Log in

The Use of Radioprotective Agents to Prevent Effects Associated with Aging

  • MODIFICATION OF RADIATION EFFECTS
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

Anti-aging properties can be found in many compounds with radiation-protective effects. Such compounds include the following: bioflavonoids, some antioxidants (N-acetylcysteine), melatonin, some non-steroid anti-inflammatory agents and statins, angiotensin converting enzyme inhibitors, metformin, rapamycin, etc. The effects of the drugs can develop both in the case of their long-term use and in case of a single application against the background of acute exposure to ionizing radiation at lethal doses. At the same time, “classical” radiation-protective agents such as cystamine, amifostine, adrenergic alfa-blockers, and androgenic drugs were not revealed to have geroprotective properties, which may be due to their high toxicity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Grebenyuk, A.N., Strelova, O.Yu., Legeza, V.I., and Stepanova, E.N., Osnovy radiobiologii i radiatsionnoy meditsiny (Basics of Radiobiology and Radiation Medicine), St. Petersburg: Foliant, 2012.

  2. Iglesias-Bartolome, R., Patel, V., Cotrim, A., et al., mTOR inhibition prevents epithelial stem cell senescence and protects from radiation-induced mucositis, Cell Stem Cell, 2012, vol. 11, no. 3, pp. 401–414.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Richardson, R.B., Ionizing radiation and aging: rejuvenating an old idea, Aging (Albany, N.Y.), 2009, vol. 1, no. 11, pp. 887–902.

    CAS  Google Scholar 

  4. Koukourakis, M.I., Radiation damage and radioprotectants: new concepts in the era of molecular medicine, Br. J. Radiol., 2012, vol. 85, no. 1012, pp. 313–330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shirazi, A., Ghobadi, G., and Ghazi-Khansari, M., A radiobiological review on melatonin: a novel radioprotector, J. Radiat. Res., 2007, vol. 48, no. 4, pp. 263–272.

    Article  CAS  PubMed  Google Scholar 

  6. Farhood, B., Goradel, N.H., Mortezaee, K., et al., Intercellular communications-redox interactions in radiation toxicity; potential targets for radiation mitigation, J. Cell. Commun. Signal., 2019, vol. 13, no. 1, pp. 3–16.

    Article  PubMed  Google Scholar 

  7. Kembro, J.M., Cortassa, S., and Aon, M.A., Complex oscillatory redox dynamics with signaling potential at the edge between normal and pathological mitochondrial function, Front. Physiol., 2014, vol. 5, p. 257.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Vijayalaxmi, Reiter, R.J., Tan, D.X., et al., Melatonin as a radioprotective agent: a review, Int. J. Radiat. Oncol. Biol. Phys., 2004, vol. 59, no. 3, pp. 639–653.

    Article  CAS  PubMed  Google Scholar 

  9. Elia, M.C., DeLuca, J.G., and Bradley, M.O., Significance and measurement of dna double strand breaks in mammalian cells, Pharmacol. Ther., 1991, vol. 51, no. 3, pp. 291–327.

    Article  CAS  PubMed  Google Scholar 

  10. Solnceva, O.S., Kalinina, N.M., Bychkova, N.V., et al., The role of cytokines in the implementation of apoptotic processes of the cells of the immune system in individuals exposed to low doses of ionizing radiation, Immunologiya, 2000, vol. 21, no. 3, pp. 22–24.

    Google Scholar 

  11. Graves, P.R., Siddiqui, F., Anscher, M.S., and Movsas, B., Radiation pulmonary toxicity: from mechanisms to management, Semin. Radiat. Oncol., 2010, vol. 20, no. 3, pp. 201–207.

    Article  PubMed  Google Scholar 

  12. Kim, J.H., Jenrow, K.A., and Brown, S.L., Mechanisms of radiation-induced normal tissue toxicity and implications for future clinical trials, Radiat. Oncol. J., 2014, vol. 32, no. 3, pp. 103–115.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Martin, M., Lefaix, J., and Delanian, S., TGF-beta1 and radiation fibrosis: a master switch and a specific therapeutic target?, Int. J. Radiat. Oncol. Biol. Phys., 2000, vol. 47, no. 2, pp. 277–290.

    Article  CAS  PubMed  Google Scholar 

  14. Ikhlov, B.L., The use of radioprotectors in gerontology, Vestn. Nov. Med. Tekhnol., 2018, vol. 25, no. 3, pp. 209–215.

    Google Scholar 

  15. Zhao, H., Chen, S., Gao, K., et al., Resveratrol protects against spinal cord injury by activating autophagy and inhibiting apoptosis mediated by the SIRT1/AMPK signaling pathway, Neuroscience, 2017, vol. 348, pp. 241–251.

    Article  CAS  PubMed  Google Scholar 

  16. Vasin, M.V., Classification of antiradiation drugs as a reflection of the current state and development prospects of radiation pharmacology, Radiats. Biol. Radioecol., 2013, vol. 53, no. 5, pp. 459–467.

    CAS  PubMed  Google Scholar 

  17. Gudkov, S.V., Popova, N.R., and Bruskov, V.I., Radioprotective agents: history, trends and prospects, Biophysics, 2015, vol. 60, no. 4, pp. 801–811.

    Article  CAS  Google Scholar 

  18. Stone, H.B., Moulder, J.E., Coleman, C.N., et al., Models for evaluating agents intended for the prophylaxis, mitigation and treatment of radiation injuries: report of an NCI Workshop, December 3–4, 2003, Radiat. Res., 2004, vol. 162, no. 6, pp. 711–728.

    Article  CAS  PubMed  Google Scholar 

  19. McLaughlin, M.F., Donoviel, D.B., and Jones, J.A., Novel indications for commonly used medications as radiation protectants in spaceflight, Aerosp. Med. Hum. Perform., 2017, vol. 88, no. 7, pp. 665–676.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mishra, K. and Alsbeih, G., Appraisal of biochemical classes of radioprotectors: evidence, current status and guidelines for future development, Biotech, 2017, vol. 7, no. 5, p. 292.

    Google Scholar 

  21. Rozhdestvenskii, L.M., Classification of antiradiation agents in terms of their pharmacological signal and contingency with the stage of development of radiation injury, Radiats. Biol. Radioecol., 2017, vol. 57, no. 2, pp. 117–135.

    Google Scholar 

  22. Singh, V.K., Romaine, P.L.P., and Newman, V.L., Biologics as countermeasures for acute radiation syndrome: where are we now?, Expert Opin. Biol. Ther., 2015, vol. 15, no. 4, pp. 465–471.

    Article  CAS  PubMed  Google Scholar 

  23. Anisimov, V.N., Life span extension and cancer risk: myths and reality, Exp. Gerontol., 2001, vol. 36, no. 7, pp. 1101–1136.

    Article  CAS  PubMed  Google Scholar 

  24. Moskalev, A., Chernyagina, E., Kudryavtseva, A., and Shaposhnikov, M., Geroprotectors: a unified concept and screening approaches, Aging Dis., 2017, vol. 8, no. 3, pp. 354–363.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Moskalev, A., Chernyagina, E., Tsvetkov, V., et al., Developing criteria for evaluation of geroprotectors as a key stage toward translation to the clinic, Aging Cell, 2016, vol. 15, no. 3, pp. 407–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim, K. and McBride, W.H., Modifying radiation damage, Curr. Drug Targets, 2010, vol. 11, no. 11, pp. 1352–1365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Grebenyuk, A.N., Zatsepin, V.V., Nazarov, V.B., and Vlasenko, T.N., Modern possibilities of prophylaxis and early treatment of radiation injuries, Voen.-Med. Zh., 2011, vol. 332, no. 2, pp. 13–17.

    Google Scholar 

  28. Ushakov, I.B. and Vasin, M.V., Drugs and natural antioxidants as components of anti-radiation countermeasures in space flights, Med. Radiol. Radiats. Bezop., 2017, vol. 62, no. 4, pp. 66–78.

    Article  Google Scholar 

  29. Barja, G., The mitochondrial free radical theory of aging, Prog. Mol. Biol. Transl. Sci., 2014, vol. 127, pp. 1–27.

    Article  CAS  PubMed  Google Scholar 

  30. Koltover, V.K., Free radical timer of aging: from chemistry of free radicals to systems theory of reliability, Curr. Aging Sci., 2017, vol. 10, no. 1, pp. 12–17.

    Article  CAS  PubMed  Google Scholar 

  31. Harman, D., Free radical theory of aging: an update: increasing the functional life span, Ann. N.Y. Acad. Sci., 2006, vol. 1067, pp. 10–21.

    Article  CAS  PubMed  Google Scholar 

  32. Ivanova, D.G. and Yankova, T.M., The free radical theory of aging in search of a strategy for increasing life span, Folia Med. (Plovdiv), 2013, vol. 55, no. 1, pp. 33–41.

    Article  CAS  Google Scholar 

  33. Ogawa, T., Kodera, Y., Hirata, D., et al., Natural thioallyl compounds increase oxidative stress resistance and lifespan in Caenorhabditis elegans by modulating SKN-1. Nrf, Sci. Rep., 2016, vol. 6, p. 21611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Fischer, N., Buchter, C., Koch, K., et al., The resveratrol derivatives trans-3,5-dimethoxy-4-fluoro-4'-hydroxystilbene and trans-2,4',5-trihydroxystilbene decrease oxidative stress and prolong lifespan in Caenorhabditis elegans,J. Pharm. Pharmacol., 2017, vol. 69, no. 1, pp. 73–81.

    Article  CAS  PubMed  Google Scholar 

  35. Citrin, D., Cotrim, A.P., Hyodo, F., et al., Radioprotectors and mitigators of radiation-induced normal tissue injury, Oncologist, 2010, vol. 15, no. 4, pp. 360–371.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Oh, S.I., Park, J.K., and Park, S.K., Lifespan extension and increased resistance to environmental stressors by N-acetyl-L-cysteine in Caenorhabditis elegans,Clinics (Sao Paulo), 2015, vol. 70, no. 5, pp. 380–386.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Proshkina, E., Lashmanova, E., Dobrovolskaya, E., et al., Geroprotective and radioprotective activity of quercetin, (–)-epicatechin, and ibuprofen in Drosophila melanogaster,Front. Pharmacol., 2016, vol. 7, p. 505.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Cong, W., Wang, P., Qu, Y., et al., Evaluation of the influence of fullerenol on aging and stress resistance using Caenorhabditis elegans,Biomaterials, 2015, vol. 42, pp. 78–86.

    Article  CAS  PubMed  Google Scholar 

  39. Ristow, M. and Zarse, K., How increased oxidative stress promotes longevity and metabolic health: the concept of mitochondrial hormesis (mitohormesis), Exp. Gerontol., 2010, vol. 45, no. 6, pp. 410–418.

    Article  CAS  PubMed  Google Scholar 

  40. Ristow, M. and Schmeisser, S., Extending life span by increasing oxidative stress, Free Radic. Biol. Med., 2011, vol. 51, no. 2, pp. 327–336.

    Article  CAS  PubMed  Google Scholar 

  41. Danilov, A., Shaposhnikov, M., Shevchenko, O., et al., Influence of non-steroidal anti-inflammatory drugs on drosophila melanogaster longevity, Oncotarget, 2015, vol. 6, no. 23, pp. 19428–19444.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Pallauf, K., Duckstein, N., Hasler, M., et al., Flavonoids as putative inducers of the transcription factors Nrf2, FoxO, and PPARγ, Oxid. Med. Cell Longev., 2017, vol. 2017, p. 4397340.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Pun, P.B., Gruber, J., Tang, S.Y., et al., Ageing in nematodes: do antioxidants extend lifespan in Caenorhabditis elegans?, Biogerontology, 2010, vol. 11, no. 1, pp. 17–30.

    Article  PubMed  Google Scholar 

  44. Van Raamsdonk, J.M., Meng, Y., Camp, D., et al., Decreased energy metabolism extends life span in Caenorhabditis elegans without reducing oxidative damage, Genetics, 2010, vol. 185, no. 2, pp. 559–571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Yang, W. and Hekimi, S., A mitochondrial superoxide signal triggers increased longevity in Caenorhabditis elegans,PLoS Biol., 2010, vol. 8, no. 12. e1000556.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Lamming, D.W., Wood, J.G., and Sinclair, D.A., Small molecules that regulate lifespan: evidence for xenohormesis, Mol. Microbiol., 2004, vol. 53, no. 4, pp. 1003–1009.

    Article  CAS  PubMed  Google Scholar 

  47. Moskalev, A.A., Plyusnina, E.N., and Shaposhnikov, M.V., Radiation hormesis and radioadaptive response in Drosophila melanogaster flies with different genetic backgrounds: the role of cellular stress-resistance mechanisms, Biogerontology, 2011, vol. 12, no. 3, pp. 253–263.

    Article  CAS  PubMed  Google Scholar 

  48. Santos, A.L., Sinha, S., and Lindner, A.B., The good, the bad, and the ugly of ROS: new insights on aging and aging-related diseases from eukaryotic and prokaryotic model organisms, Oxid. Med. Cell Longev., 2018, vol. 2018, p. 1941285.

    PubMed  PubMed Central  Google Scholar 

  49. Mishur, R.J., Khan, M., Munkacsy, E., et al., Mitochondrial metabolites extend lifespan, Aging Cell, 2016, vol. 15, no. 2, pp. 336–348.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Oike, T., Suzuki, Y., Al-Jahdari, W., et al., Suppression of HIF-1α expression and radiation resistance in acute hypoxic conditions, Exp. Ther. Med., 2012, vol. 3, no. 1, pp. 141–145.

    Article  CAS  PubMed  Google Scholar 

  51. Lee, D.E., Alhallak, K., Jenkins, S.V., et al., A radiosensitizing inhibitor of HIF-1 alters the optical redox state of human lung cancer cells in vitro, Sci. Rep., 2018, vol. 8, no. 1, p. 8815.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Semenza, G.L., Shimoda, L.A., and Prabhakar, N.R., Regulation of gene expression by HIF-1, Novartis Found Symp., 2006, vol. 272, pp. 2–8.

    CAS  PubMed  Google Scholar 

  53. Lin, X.W., Tang, L., Yang, J., and Xu, W.H., HIF-1 regulates insect lifespan extension by inhibiting c-Myc-TFAM signaling and mitochondrial biogenesis, Biochim. Biophys. Acta, 2016, vol. 1863, no. 11, pp. 2594–2603.

    Article  CAS  PubMed  Google Scholar 

  54. Havermann, S., Humpf, H.U., and Wätjen, W., Baicalein modulates stress-resistance and life span in C. elegans via SKN-1 but not DAF-16, Fitoterapia, 2016, vol. 113, pp. 123–127.

    Article  CAS  PubMed  Google Scholar 

  55. Fei, P. and El-Deiry, W.S., P53 and radiation responses, Oncogene, 2003, vol. 22, no. 37, pp. 5774–5783.

    Article  CAS  PubMed  Google Scholar 

  56. Niedernhofer, L.J., Gurkar, A.U., Wang, Y., et al., Nuclear genomic instability and aging, Annu. Rev. Biochem., 2018, no. 87, pp. 295–322.

  57. Cedikova, M., Pitule, P., Kripnerova, M., et al., Multiple roles of mitochondria in aging processes, Physiol. Res., 2016, vol. 65, suppl. 5, pp. 519–531.

  58. Fortini, P., Pascucci, B., Parlanti, E., et al., 8-Oxoguanine DNA damage: at the crossroad of alternative repair pathways, Mutat. Res., 2003, vol. 531, nos. 1–2, pp. 127–139.

    Article  CAS  PubMed  Google Scholar 

  59. Li, T., Zhou, Z.W., Ju, Z., and Wang, Z.Q., DNA damage response in hematopoietic stem cell ageing, Genomics Proteomics Bioinf., 2016, vol. 14, no. 3, pp. 147–154.

    Article  Google Scholar 

  60. Wątroba, M., Dudek, I., Skoda, M., et al., Sirtuins, epigenetics and longevity, Ageing Res. Rev., 2017, vol. 40, pp. 11–19.

    Article  PubMed  CAS  Google Scholar 

  61. Anderson, E.N., Corkins, M.E., Li, J.C., et al., C. elegans lifespan extension by osmotic stress requires FUdR, base excision repair, FOXO, and sirtuins, Mech. Ageing Dev., 2016, vol. 154, pp. 30–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Mishra, K.N., Moftah, B.A., and Alsbeih, G.A., Appraisal of mechanisms of radioprotection and therapeutic approaches of radiation countermeasures, Biomed. Pharmacother., 2018, vol. 106, pp. 610–617.

    Article  CAS  PubMed  Google Scholar 

  63. Kang, K.A., Lee, J.H., Chae, S., et al., Butin decreases oxidative stress-induced 8-hydroxy-2'-deoxyguanosine levels via activation of oxoguanine glycosylase 1, Chem. Biol. Interact., 2009, vol. 181, no. 3, pp. 338–342.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang, R., Lee, I.K., Piao, M.J., et al., Butin (7,3',4'-trihydroxydihydroflavone) reduces oxidative stress-induced cell death via inhibition of the mitochondria-dependent apoptotic pathway, Int. J. Mol. Sci., 2011, vol. 12, no. 6, pp. 3871–3887.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Howitz, K.T., Bitterman, K.J., Cohen, H.Y., et al., Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan, Nature, 2003, vol. 425, no. 6954, pp. 191–196.

    Article  CAS  PubMed  Google Scholar 

  66. Patil, S.L., Swaroop, K., Kakde, N., and Somashekarappa, H.M., In vitro protective effect of rutin and quercetin against radiation-induced genetic damage in human lymphocytes, Indian J. Nucl. Med., 2017, vol. 32, no. 4, pp. 289–295.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Kampkötter, A., Timpel, C., Zurawski, R.F., et al., Increase of stress resistance and lifespan of Caenorhabditis elegans by quercetin, Comp. Biochem. Physiol. Biochem. Mol. Biol., 2008, vol. 149, no. 2, pp. 314–323.

    Article  CAS  Google Scholar 

  68. Saul, N., Pietsch, K., Menzel, R., and Steinberg, C.E., Quercetin-mediated longevity in Caenorhabditis elegans: is DAF-16 involved?, Mech. Ageing Dev., 2008, vol. 129, no. 10, pp. 611–613.

    Article  CAS  PubMed  Google Scholar 

  69. Zhu, Y., Tchkonia, T., Pirtskhalava, T., et al., The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 2015, vol. 14, no. 4, pp. 644–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Zhu, Y., Doornebal, E.J., Pirtskhalava, T., et al., New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463, Aging (Albany, NY), 2017, vol. 9, no. 3, pp. 955–963.

    Article  Google Scholar 

  71. Carsten, R.E., Bachand, A.M., Bailey, S.M., and Ullrich, R.L., Resveratrol reduces radiation-induced chromosome aberration frequencies in mouse bone marrow cells, Radiat. Res., 2008, vol. 169, no. 6, pp. 633–638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Koohian, F., Shanei, A., Shahbazi-Gahrouei, D., et al., The radioprotective effect of resveratrol against genotoxicity induced by γ-irradiation in mice blood lymphocytes, Dose Response, 2017, vol. 15, no. 2. 1559325817705699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Sebastià, N., Almonacid, M., Villaescusa, J.I., et al., Radioprotective activity and cytogenetic effect of resveratrol in human lymphocytes: an in vitro evaluation, Food Chem. Toxicol., 2013, no. 51, pp. 391–395.

  74. Li, J., Feng, L., Xing, Y., et al., Radioprotective and antioxidant effect of resveratrol in hippocampus by activating Sirt1, Int. J. Mol. Sci., 2014, vol. 15, no. 4, pp. 5928–5939.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ferry-Dumazet, H., Garnier, O., Mamani-Matsuda, M., et al., Resveratrol inhibits the growth and induces the apoptosis of both normal and leukemic hematopoietic cells, Carcinogenesis, 2002, vol. 23, no. 8, pp. 1327–1333.

    Article  CAS  PubMed  Google Scholar 

  76. Lopez-Jornet, P., Gómez-García, F., García Carrillo, N., et al., Radioprotective effects of lycopene and curcumin during local irradiation of parotid glands in Sprague Dawley rats, Br. J. Oral Maxillofac. Surg., 2016, vol. 54, no. 3, pp. 275–279.

    Article  PubMed  Google Scholar 

  77. Sebastià, N., Montoro, A., Hervás, D., et al., Curcumin and trans-resveratrol exert cell cycle-dependent radioprotective or radiosensitizing effects as elucidated by the PCC and G2-assay, Mutat. Res., 2014, vols. 766–767, pp. 49–55.

    Article  PubMed  CAS  Google Scholar 

  78. Tawfik, S.S., Abouelella, A.M., and Shahein, Y.E., Curcumin protection activities against γ-rays-induced molecular and biochemical lesions, BMC Res. Notes, 2013, vol. 6, p. 375.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Marchal, J., Pifferi, F., and Aujard, F., Resveratrol in mammals: effects on aging biomarkers, age-related diseases, and life span, Ann. N.Y. Acad. Sci., 2013, vol. 1290, pp. 67–73.

    Article  CAS  PubMed  Google Scholar 

  80. Sadowska-Bartosz, I. and Bartosz, G., Effect of antioxidants supplementation on aging and longevity, Biomed. Res. Int., 2014, vol. 2014, p. 404680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Tarumov, R.A., Grebenyuk, A.N., Basharin, V.A., and Kovtun, V.Yu., Biological properties of phytoestrogen genistein, Med. Extrem. Situats., 2014, vol. 2, no. 48, pp. 55–68.

    Google Scholar 

  82. Altun, D., Uysal, H., Aşkın, H., and Ayar, A., Determination of the effects of genistein on the longevity of Drosophila melanogaster Meigen (Diptera; Drosophilidae), Bull. Environ. Contam. Toxicol., 2011, vol. 86, no. 1, pp. 120–123.

    Article  CAS  PubMed  Google Scholar 

  83. Gandhi, N.M., Baicalein protects mice against radiation-induced DNA damages and genotoxicity, Mol. Cell Biochem., 2013, vol. 379, nos. 1–2, pp. 277–281.

    Article  CAS  PubMed  Google Scholar 

  84. Havermann, S., Rohrig, R., Chovolou, Y., et al., Molecular effects of baicalein in Hct116 cells and Caenorhabditis elegans: activation of the Nrf2 signaling pathway and prolongation of lifespan, J. Agric. Food Chem., 2013, vol. 61, no. 9, pp. 2158–2164.

    Article  CAS  PubMed  Google Scholar 

  85. Bonomini, F., Favero, G., Rodella, L.F., et al., Melatonin modulation of sirtuin-1 attenuates liver injury in a hypercholesterolemic mouse model, Biomed. Res. Int., 2018, vol. 2018, p. 7968452.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Ramis, M.R., Esteban, S., Miralles, A., et al., Caloric restriction, resveratrol and melatonin: role of SIRT1 and implications for aging and related-diseases, Mech. Ageing Dev., 2015, vols. 146–148, pp. 28–41.

    Article  PubMed  CAS  Google Scholar 

  87. Amini, P., Mirtavoos-Mahyari, H., Motevaseli, E., et al., Mechanisms for radioprotection by melatonin; can it be used as a radiation countermeasure?, Curr. Mol. Pharmacol., 2019, vol. 12, no. 1, pp. 2–11.

    Article  CAS  PubMed  Google Scholar 

  88. Griffin, F. and Marignol., L., Therapeutic potential of melatonin for breast cancer radiation therapy patients, Int. J. Radiat. Biol., 2018, vol. 94, no. 5, pp. 472–477.

    Article  CAS  PubMed  Google Scholar 

  89. Mihandoost, E., Shirazi, A., Mahdavi, S.R., and Aliasgharzadeh, A., Consequences of lethal-whole-body gamma radiation and possible ameliorative role of melatonin, Sci. World J., 2014, vol. 2014, p. 621570.

    Article  CAS  Google Scholar 

  90. Fernández-Gil, B., Moneim, A.E., Ortiz, F., et al., Melatonin protects rats from radiotherapy-induced small intestine toxicity, PLoS One, 2017, vol. 12, no. 4. e0174474.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Khan, S., Adhikari, J.S., Rizvi, M.A., and Chaudhury, N.K., Melatonin attenuates 60 Co γ-ray-induced hematopoietic, immunological and gastrointestinal injuries in C57BL/6 male mice, Environ. Toxicol., 2017, vol. 32, no. 2, pp. 501–518.

    Article  CAS  PubMed  Google Scholar 

  92. Jenwitheesuk, A., Nopparat, C., Mukda, S., et al., Melatonin regulates aging and neurodegeneration through energy metabolism, epigenetics, autophagy and circadian rhythm pathways, Int. J. Mol. Sci., 2014, vol. 15, no. 9, pp. 16848–16884.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  93. Reiter, R.J., Oxygen radical detoxification processes during aging: the functional importance of melatonin, Aging (Milano), 1995, vol. 7, no. 5, pp. 340–351.

    CAS  PubMed  Google Scholar 

  94. Abdullaev, S., Minkabirova, G., Karmanova, E., et al., Metformin prolongs survival rate in mice and causes increased excretion of cell-free DNA in the urine of X‑irradiated rats, Mutat. Res., 2018, vol. 831, pp. 13–18.

    Article  CAS  Google Scholar 

  95. El-Mir, M.Y., Nogueira, V., Fontaine, E., et al., Dimethylbiguanide inhibits cell respiration via an indirect effect targeted on the respiratory chain complex I, J. Biol. Chem., 2000, vol. 275, no. 1, pp. 223–228.

    Article  CAS  PubMed  Google Scholar 

  96. Owen, M.R., Doran, E., and Halestrap, A.P., Evidence that metformin exerts its anti-diabetic effects through inhibition of complex 1 of the mitochondrial respiratory chain, Biochem. J., 2000, vol. 348, pp. 607–614.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Madiraju, A.K., Erion, D.M., Rahimi, Y., et al., Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase, Nature, 2014, vol. 510, no. 7506, pp. 542–546.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Kim, J.M., Yoo, H., Kim, J.Y., et al., Metformin alleviates radiation-induced skin fibrosis via the downregulation of FOXO3, Cell Physiol. Biochem., 2018, vol. 48, no. 3, pp. 959–970.

    Article  CAS  PubMed  Google Scholar 

  99. Bridges, H.R., Sirvio, V.A., Agip, A.N., and Hirst, J., Molecular features of biguanides required for targeting of mitochondrial respiratory complex i and activation of AMP-kinase, BMC Biol., 2016, no. 14, p. 65.

  100. Wang, J., Wang, Y., Han, J., et al., Metformin attenuates radiation-induced pulmonary fibrosis in a murine model, Radiat. Res., 2017, vol. 188, no. 1, pp. 105–113.

    Article  CAS  PubMed  Google Scholar 

  101. Anisimov, V.N., Piskunova, T.S., Popovich, I.G., et al., Gender differences in metformin effect on aging, life span and spontaneous tumorigenesis in 129/Sv mice, Aging (Albany, NY), 2010, vol. 2, no. 12, pp. 945–958.

    Article  CAS  Google Scholar 

  102. Castillo-Quan, J.I., Kinghorn, K.J., and Bjedov, I., Genetics and pharmacology of longevity: the road to therapeutics for healthy aging, Adv. Genet., 2015, no. 90, pp. 1–101.

  103. Wallace, D.C. and Fan, W., The pathophysiology of mitochondrial disease as modeled in the mouse, Genes Dev., 2009, vol. 23, no. 15, pp. 1714–1736.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Keogh, M. and Chinnery, P.F., Hereditary mtDNA heteroplasmy: a baseline for aging?, Cell Metab., 2013, vol. 18, no. 4, pp. 463–464.

    Article  CAS  PubMed  Google Scholar 

  105. Kam, W.W. and Banati, R.B., Effects of ionizing radiation on mitochondria, Free Radic. Biol. Med., 2013, vol. 65, pp. 607–619.

    Article  CAS  PubMed  Google Scholar 

  106. Aon, M.A., Cortassa, S., Juhaszova, M., and Sollott, S.J., Mitochondrial health, the epigenome and healthspan, Clin. Sci. (London), 2016, vol. 130, no. 15, pp. 1285–1305.

    Article  CAS  Google Scholar 

  107. Vurusaner, B., Poli, G., and Basaga, H., Tumor suppressor genes and ROS: complex networks of interactions, Free Radic. Biol. Med., 2012, vol. 52, no. 1, pp. 7–18.

    Article  CAS  PubMed  Google Scholar 

  108. Albert, V. and Hall, M.N., mTOR signaling in cellular and organismal energetics, Curr. Opin. Cell Biol., 2015, vol. 33, pp. 55–66.

    Article  CAS  PubMed  Google Scholar 

  109. Finkel, T., The metabolic regulation of aging, Nat. Med., 2015, vol. 21, no. 12, pp. 1416–1423.

    Article  CAS  PubMed  Google Scholar 

  110. Poels, J., Spasić, M.R., Callaerts, P., and Norga, K.K., Expanding roles for AMP-activated protein kinase in neuronal survival and autophagy, BioEssays, 2009, vol. 31, no. 9, pp. 944–952.

    Article  CAS  PubMed  Google Scholar 

  111. Blagosklonny, M.V., From rapalogs to anti-aging formula, Oncotarget, 2017, vol. 8, no. 22, pp. 35492–35507.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Kalyanaraman, B., Cheng, G., Hardy, M., et al., Mitochondria-targeted metformins: anti-tumour and redox signalling mechanisms, Interface Focus, 2017, vol. 7, no. 2, p. 20160109.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Lee, H.J., Kim, S.R., Kim, J.C., et al., In vivo radioprotective effect of Panax ginseng C.A. Meyer and identification of active ginsenosides, Phytother. Res., 2006, vol. 20, no. 5, pp. 392–395.

    Article  CAS  PubMed  Google Scholar 

  114. Lee, H.J., Kim, J.S., Moon, C., et al., Modification of gamma-radiation response in mice by green tea polyphenols, Phytother. Res., 2008, vol. 22, no. 10, pp. 1380–1383.

    Article  CAS  PubMed  Google Scholar 

  115. Monzen, S. and Kashiwakura, I., Radioprotective effects of (–)-epigallocatechin-3-gallate on human erythrocyte/granulocyte lineages, Radiat. Prot. Dosimetry, 2012, vol. 152, nos. 1–3, pp. 224–228.

    Article  CAS  PubMed  Google Scholar 

  116. Ko, H.L. and Ren, E.C., Functional aspects of PARP1 in DNA repair and transcription, Biomolecules, 2012, vol. 2, no. 4, pp. 524–548.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Shibata, A., Maeda, D., Ogino, H., et al., Role of PARP-1 in suppressing spontaneous deletion mutation in the liver and brain of mice at adolescence and advanced age, Mutat. Res., 2009, vol. 664, nos. 1–2, pp. 20–27.

    Article  CAS  PubMed  Google Scholar 

  118. Tong, W.M., Yang, Y.G., Cao, W.H., et al., Poly (ADP-ribose) polymerase-1 plays a role in suppressing mammary tumourigenesis in mice, Oncogene, 2007, vol. 26, no. 26, pp. 3857–3867.

    Article  CAS  PubMed  Google Scholar 

  119. Chen, Y., Li, Z., Dong, Z., et al., 14-3-3σ contributes to radioresistance by regulating DNA repair and cell cycle via PARP1 and CHK2, Mol. Cancer Res., 2017, vol. 15, no. 4, pp. 418–428.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. O’Sullivan Coyne, G., Chen, A., and Kummar, S., Delivering on the promise: poly ADP ribose polymerase inhibition as targeted anticancer therapy, Curr. Opin. Oncol., 2015, vol. 27, no. 6, pp. 475–481.

    Article  CAS  Google Scholar 

  121. Bi, Y., Verginadis, I.I., Dey, S., et al., Radiosensitization by the PARP inhibitor olaparib in BRCA1-proficient and deficient high-grade serous ovarian carcinomas, Gynecol. Oncol., 2018, vol. 150, no. 3, pp. 534–544.

    Article  CAS  PubMed  Google Scholar 

  122. Xu, M., Pirtskhalava, T., Farr, J.N., et al., Senolytics improve physical function and increase lifespan in old age, Nat. Med., 2018, vol. 24, no. 8, pp. 1246–1256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yousefzadeh, M.J., Zhu, Y., McGowan, S.J., et al., Fisetin is a senotherapeutic that extends health and lifespan, EBioMedicine, 2018, vol. 36, pp. 18–28.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Justice, J.N., Nambiar, A.M., Tchkonia, T., et al., Senolytics in idiopathic pulmonary fibrosis: results from a first-in-human, open-label, pilot study, EBioMedicine, 2019, vol. 40, pp. 554–563.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Zhu, Y., Tchkonia, T., Pirtskhalava, T., et al., The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs, Aging Cell, 2015, vol. 14, no. 4, pp. 644–658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Zhu, Y., Doornebal, E.J., Pirtskhalava, T., et al., New agents that target senescent cells: the flavone, fisetin, and the BCL-XL inhibitors, A1331852 and A1155463, Aging (Albany, NY), 2017, vol. 9, no. 3, pp. 955–963.

    Article  Google Scholar 

  127. Patwardhan, R.S., Sharma, D., Checker, R., and Sandur, S.K., Mitigation of radiation-induced hematopoietic injury via regulation of cellular MAPK/phosphatase levels and increasing hematopoietic stem cells, Free Radic. Biol. Med., 2014, vol. 68, pp. 52–64.

    Article  CAS  PubMed  Google Scholar 

  128. Thabet, N.M. and Moustafa, E.M., Protective effect of rutin against brain injury induced by acrylamide or gamma radiation: role of PI3K/AKT/GSK-3β/NRF-2 signalling pathway, Arch. Physiol. Biochem., 2018, vol. 124, no. 2, pp. 185–193.

    Article  CAS  PubMed  Google Scholar 

  129. Canman, C.E., Lim, D.S., Cimprich, K.A., et al., Activation of the ATM kinase by ionizing radiation and phosphorylation of p53, Science, 1998, vol. 281, no. 5383, pp. 1677–1679.

    Article  CAS  PubMed  Google Scholar 

  130. Morita, A., Yamamoto, S., Wang, B., et al., Sodium orthovanadate inhibits p53-mediated apoptosis, Cancer Res., 2010, vol. 70, no. 1, pp. 257–265.

    Article  CAS  PubMed  Google Scholar 

  131. Komarov, P.G., Komarova, E.A., Kondratov, R.V., et al., A chemical inhibitor of p53 that protects mice from the side effects of cancer therapy, Science, 1999, vol. 285, no. 5434, pp. 1733–1737.

    Article  CAS  PubMed  Google Scholar 

  132. Ghosh, S.P., Perkins, M.W., Hieber, K., et al., Radiation protection by a new chemical entity, Ex-Rad: efficacy and mechanisms, Radiat. Res., 2009, vol. 171, no. 2, pp. 173–179.

    Article  CAS  PubMed  Google Scholar 

  133. Ariyasu, S., Sawa, A., Morita, A., et al., Design and synthesis of 8-hydroxyquinoline-based radioprotective agents, Bioorg. Med. Chem., 2014, vol. 22, no. 15, pp. 3891–3905.

    Article  CAS  PubMed  Google Scholar 

  134. Sahu, B.D., Mahesh, KumarJ., and Sistla, R., Baicalein, a bioflavonoid, prevents cisplatin-induced acute kidney injury by up-regulating antioxidant defenses and down-regulating the MAPKs and NF-κB pathways, PLoS One, 2015, vol. 10, no. 7. e0134139.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Yang, H., Huang, F., Tao, Y., et al., Simvastatin ameliorates ionizing radiation-induced apoptosis in the thymus by activating the AKT/sirtuin 1 pathway in mice, Int. J. Mol. Med., 2017, vol. 40, no. 3, pp. 762–770.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  136. Vávrová, J. and Rezáčová, M., Importance of proapoptotic protein PUMA in cell radioresistance, Folia Biol. (Praha), 2014, vol. 60, no. 2, pp. 53–56.

    Google Scholar 

  137. Komarova, E.A., Kondratov, R.V., Wang, K., et al., Dual effect of p53 on radiation sensitivity in vivo: p53 promotes hematopoietic injury, but protects from gastro-intestinal syndrome mice, Oncogene, 2004, vol. 23, no. 19, pp. 3265–3271.

    Article  CAS  PubMed  Google Scholar 

  138. Donehower, L.A., Harvey, M., Slagle, B.L., et al., Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumors, Nature, 1992, vol. 356, no. 6366, pp. 215–221.

    Article  CAS  PubMed  Google Scholar 

  139. Kemp, C.J., Wheldon, T., and Balmain, A., p53-Deficient mice are extremely susceptible to radiation-induced tumorigenesis, Nat. Genet., 1994, vol. 8, no. 1, pp. 66–69.

    Article  CAS  PubMed  Google Scholar 

  140. Althubiti, M., Rada, M., Samuel, J., et al., BTK modulates p53 activity to enhance apoptotic and senescent responses, Cancer Res., 2016, vol. 76, no. 18, pp. 5405–5414.

    Article  CAS  PubMed  Google Scholar 

  141. Rufini, A., Tucci, P., Celardo, I., and Melino, G., Senescence and aging: the critical roles of p53, Oncogene, 2013, vol. 32, no. 43, pp. 5129–5143.

    Article  CAS  PubMed  Google Scholar 

  142. Hao, B., Xiao, Y., Song, F., et al., Metformin-induced activation of AMPK inhibits the proliferation and migration of human aortic smooth muscle cells through upregulation of p53 and IFI16, Int. J. Mol. Med., 2018, vol. 41, no. 3, pp. 1365–1376.

    CAS  PubMed  Google Scholar 

  143. Christy, B., Demaria, M., Campisi, J., et al., p53 and rapamycin are additive, Oncotarget, 2015, vol. 6, no. 18, pp. 15802–15813.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Zhou, B.B., Chaturvedi, P., Spring, K., et al., Caffeine abolishes the mammalian G(2)/M DNA damage checkpoint by inhibiting ataxia-telangiectasia-mutated kinase activity, J. Biol. Chem., 2000, vol. 275, no. 14, pp. 10342–10348.

    Article  CAS  PubMed  Google Scholar 

  145. Rallis, C., Codlin, S., and Bahler, J., TORC1 signaling inhibition by rapamycin and caffeine affect lifespan, global gene expression, and cell proliferation of fission yeast, Aging Cell, 2013, vol. 12, no. 4, pp. 563–573.

    Article  CAS  PubMed  Google Scholar 

  146. Zhao, X., Yang, H., Jiang, G., et al., Simvastatin attenuates radiation-induced tissue damage in mice, J. Radiat. Res., 2014, vol. 55, no. 2, pp. 257–264.

    Article  CAS  PubMed  Google Scholar 

  147. Spindler, S.R., Mote, P.L., and Flegal, J.M., Combined statin and angiotensin-converting enzyme (ACE) inhibitor treatment increases the lifespan of long-lived F1 male mice, Age (Dordr.), 2016, vol. 38, nos. 5–6, pp. 379–391.

    Article  CAS  Google Scholar 

  148. Leibowitz, B.J., Qiu, W., Liu, H., et al., Uncoupling p53 functions in radiation-induced intestinal damage via PUMA and p21, Mol. Cancer Res., 2011, vol. 9, no. 5, pp. 616–625.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Yu, H., Shen, H., Yuan, Y., et al., Deletion of PUMA protects hematopoietic stem cells and confers long-term survival in response to high-dose gamma-irradiation, Blood, 2010, vol. 115, no. 17, pp. 3472–3480.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wang, X., Wei, L., Cramer, J.M., et al., Pharmacologically blocking p53-dependent apoptosis protects intestinal stem cells and mice from radiation, Sci. Rep., 2015, no. 5, p. 8566.

  151. Jiang, X., Perez-Torres, C.J., Thotala, D., et al., A GSK-3β inhibitor protects against radiation necrosis in mouse brain, Int. J. Radiat. Oncol. Biol. Phys., 2014, vol. 89, no. 4, pp. 714–721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Feng, T., Liu, J., Zhou, N., et al., CLZ-8, a potent small-molecular compound, protects radiation-induced damages both in vitro and in vivo, Environ. Toxicol. Pharmacol., 2018, vol. 61, pp. 44–51.

    Article  CAS  PubMed  Google Scholar 

  153. Tichy, A., Marek, J., Havelek, R., et al., New light on an old friend: targeting PUMA in radioprotection and therapy of cardiovascular and neurodegenerative diseases, Curr. Drug Targets, 2018, vol. 19, no. 16, pp. 1943–1957.

    Article  CAS  PubMed  Google Scholar 

  154. Dehghan, E., Zhang, Y., Saremi, B., et al., Hydralazine induces stress resistance and extends c. elegans lifespan by activating the NRF2/SKN-1 signaling pathway, Nat. Commun., 2017, vol. 8, no. 1, p. 2223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  155. You, W.C., Lin, W.C., Huang, J.T., and Hsieh, C.C., Indigowood root extract protects hematopoietic cells, reduces tissue damage and modulates inflammatory cytokines after total-body irradiation: does Indirubin play a role in radioprotection?, Phytomedicine, 2009, vol. 16, no. 12, pp. 1105–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Sklirou, A.D., Gaboriaud-Kolar, N., Papassideri, I., et al., 6-Bromo-indirubin-3'-oxime (6BIO), a glycogen synthase kinase-3β inhibitor, activates cytoprotective cellular modules and suppresses cellular senescence-mediated biomolecular damage in human fibroblasts, Sci. Rep., 2017, vol. 7, no. 1, p. 11713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  157. Shankar, S., Singh, G., and Srivastava, R.K., Chemoprevention by resveratrol: molecular mechanisms and therapeutic potential, Front. Biosci., 2007, no. 12, pp. 4839–4854.

  158. Qiu, W., Leibowitz, B., Zhang, L., and Yu, J., Growth factors protect intestinal stem cells from radiation-induced apoptosis by suppressing PUMA through the PI3K/AKT/p53 axis, Oncogene, 2010, vol. 29, no. 11, pp. 1622–1632.

    Article  CAS  PubMed  Google Scholar 

  159. Martins, R., Lithgow, G.J., and Link, W., Long live FOXO: unraveling the role of FOXO proteins in aging and longevity, Aging Cell, 2016, vol. 15, no. 2, pp. 196–207.

    Article  CAS  PubMed  Google Scholar 

  160. Mao, K., Quipildor, G.F., Tabrizian, T., et al., Late-life targeting of the IGF-1 receptor improves healthspan and lifespan in female mice, Nat. Commun., 2018, vol. 9, no. 1, p. 2394.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  161. Lee, E.K., Kim, J.M., Choi, J., et al., Modulation of NF-κB and FOXOs by baicalein attenuates the radiation-induced inflammatory process in mouse kidney, Free Radic. Res., 2011, vol. 45, no. 5, pp. 507–517.

    Article  CAS  PubMed  Google Scholar 

  162. Holler, V., Buard, V., Gaugler, M.H., et al., Pravastatin limits radiation-induced vascular dysfunction in the skin, J. Invest. Dermatol., 2009, vol. 129, no. 5, pp. 1280–1291.

    Article  CAS  PubMed  Google Scholar 

  163. Katz, M.S., Therapy insight: Potential of statins for cancer chemoprevention and therapy, Nat. Clin. Pract. Oncol., 2005, vol. 2, no. 2, pp. 82–89.

    Article  CAS  PubMed  Google Scholar 

  164. Warita, K., Warita, T., Beckwitt, C.H., et al., Statin-induced mevalonate pathway inhibition attenuates the growth of mesenchymal-like cancer cells that lack functional E-cadherin mediated cell cohesion, Sci. Rep., 2014, no. 4, p. 7593.

  165. Gaugler, M.H., Vereycken-Holler, V., Squiban, C., et al., Pravastatin limits endothelial activation after irradiation and decreases the resulting inflammatory and thrombotic responses, Radiat. Res., 2005, vol. 163, no. 5, pp. 479–487.

    Article  CAS  PubMed  Google Scholar 

  166. Ostrau, C., Hülsenbeck, J., Herzog, M., et al., Lovastatin attenuates ionizing radiation-induced normal tissue damage in vivo, Radiother. Oncol., 2009, vol. 92, no. 3, pp. 492–499.

    Article  CAS  PubMed  Google Scholar 

  167. Mathew, B., Huang, Y., Jacobson, J.R., et al., Simvastatin attenuates radiation-induced murine lung injury and dysregulated lung gene expression, Am. J. Respir. Cell Mol. Biol., 2011, vol. 44, no. 3, pp. 415–422.

    Article  CAS  PubMed  Google Scholar 

  168. Laube, M., Kniess, T., and Pietzsch, J., Development of antioxidant COX-2 inhibitors as radioprotective agents for radiation therapy: a hypothesis-driven review, Antioxidants (Basel), 2016, vol. 5, no. 2. pii: E14.

    Article  PubMed  CAS  Google Scholar 

  169. Hosseinimehr, S.J., Nobakht, R., Ghasemi, A., and Pourfallah, T.A., Radioprotective effect of mefenamic acid against radiation-induced genotoxicity in human lymphocytes, Radiat. Oncol. J., 2015, vol. 33, no. 3, pp. 256–260.

    Article  PubMed  PubMed Central  Google Scholar 

  170. Yeoh, A.S., Gibson, R.J., Yeoh, E.E., et al., A novel animal model to investigate fractionated radiotherapy-induced alimentarymucositis: the role of apoptosis, p53, nuclear factor-kappaB, COX-1, and COX-2, Mol. Cancer Ther., 2007, vol. 6, no. 8, pp. 2319–2327.

    Article  CAS  PubMed  Google Scholar 

  171. Hofer, M., Pospisil, M., Dusek, L., et al., A single dose of an inhibitor of cyclooxygenase 2, meloxicam, administered shortly after irradiation increases survival of lethally irradiated mice, Radiat. Res., 2011, vol. 176, no. 2, pp. 269–272.

    Article  CAS  PubMed  Google Scholar 

  172. Yamasaki, M.C., Nejaim, Y., Roque-Torres, G.D., and Freitas, D.Q., Meloxicam as a radiation-protective agent on mandibles of irradiated rats, Braz. Dent. J., 2017, vol. 28, no. 2, pp. 249–255.

    Article  PubMed  Google Scholar 

  173. Armagan, G., Turunc, E., Kanit, L., and Yalcin, A., Neuroprotection by mefenamic acid against D-serine: involvement of oxidative stress, inflammation and apoptosis, Free Radic. Res., 2012, vol. 46, no. 6, pp. 726–739.

    Article  CAS  PubMed  Google Scholar 

  174. Kharofa, J., Cohen, E.P., Tomic, R., et al., Decreased risk of radiation pneumonitis with incidental concurrent use of angiotensin-converting enzyme inhibitors and thoracic radiation therapy, Int. J. Radiat. Oncol. Biol. Phys., 2012, vol. 84, no. 1, pp. 238–243.

    Article  CAS  PubMed  Google Scholar 

  175. Molthen, R.C., Wu, Q., Fish, B.L., et al., Mitigation of radiation induced pulmonary vascular injury by delayed treatment with captopril, Respirology, 2012, vol. 17, no. 8, pp. 1261–1268.

    Article  PubMed  Google Scholar 

  176. Van der Veen, S.J., Ghobadi, G., de Boer, R.A., et al., ACE inhibition attenuates radiation-induced cardiopulmonary damage, Radiother. Oncol., 2015, vol. 114, no. 1, pp. 96–103.

    Article  CAS  PubMed  Google Scholar 

  177. Gao, F., Fish, B.L., Moulder, J.E., et al., Enalapril mitigates radiation-induced pneumonitis and pulmonary fibrosis if started 35 days after whole-thorax irradiation, Radiat. Res., 2013, vol. 180, no. 5, pp. 546–552.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Sun, F., Sun, H., Zheng, X., et al., Angiotensin-converting enzyme inhibitors decrease the incidence of radiation-induced pneumonitis among lung cancer patients: a systematic review and meta-analysis, J. Cancer, 2018, vol. 9, no. 12, pp. 2123–2131.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  179. Lee, T.C., Greene-Schloesser, D., Payne, V., et al., Chronic administration of the angiotensin-converting enzyme inhibitor, ramipril, prevents fractionated whole-brain irradiation-induced perirhinal cortex-dependent cognitive impairment, Radiat. Res., 2012, vol. 178, no. 1, pp. 46–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Robbins, M.E., Zhao, W., Garcia-Espinosa, M.A., and Diz, D.I., Renin-angiotensin system blockers and modulation of radiation-induced brain injury, Curr. Drug Targets, 2010, vol. 11, no. 11, pp. 1413–1422.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Stone, N.J., Turin, A., Spitz, J.A., et al., Statin therapy across the lifespan: evidence in major age groups, Expert Rev. Cardiovasc. Ther., 2016, vol. 14, no. 3, pp. 341–366.

    Article  CAS  PubMed  Google Scholar 

  182. Kumar, S., Dietrich, N., and Kornfeld, K., Angiotensin converting enzyme (ACE) inhibitor extends Caenorhabditis elegans life span, PLoS Genet., 2016, vol. 12, no. 2. e1005866.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  183. Ayyadevara, S., Bharill, P., Dandapat, A., et al., Aspirin inhibits oxidant stress, reduces age-associated functional declines, and extends lifespan of Caenorhabditis elegans,Antioxid. Redox Signal., 2013, vol. 18, no. 5, pp. 481–490.

    Article  CAS  PubMed  Google Scholar 

  184. Ching, T.T., Chiang, W.C., Chen, C.S., and Hsu, A.L., Celecoxib extends C. elegans lifespan via inhibition of insulin-like signaling but not cyclooxygenase-2 activity, Aging Cell, 2011, vol. 10, no. 3, pp. 506–519.

    Article  CAS  PubMed  Google Scholar 

  185. Blagosklonny, M.V., Validation of anti-aging drugs by treating age-related diseases, Aging (Albany, NY), 2009, vol. 1, no. 3, pp. 281–288.

    Article  CAS  Google Scholar 

  186. Aliper, A., Belikov, A.V., Garazha, A., et al., In search for geroprotectors: in silico screening and in vitro validation of signalome-level mimetics of young healthy state, Aging (Albany, NY), 2016, vol. 8, no. 9, pp. 2127–2152.

    Article  CAS  Google Scholar 

  187. Prasanna, P.G.S., Narayanan, D., Hallett, K., et al., Radioprotectors and radiomitigators for improving radiation therapy: the small business innovation research (SBIR) gateway for accelerating clinical translation, Radiat. Res., 2015, vol. 184, no. 3, pp. 235–248.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Yahyapour, R., Amini, P., Rezapour, S., et al., Radiation-induced inflammation and autoimmune diseases, Mil. Med. Res., 2018, vol. 5, no. 1, p. 9.

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Grebenyuk.

Ethics declarations

The authors declare that they have no conflict of interest. This article does not contain any studies involving animals or human participants performed by any of the authors.

Additional information

Translated by L. Solovyova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bykov, V.N., Grebenyuk, A.N. & Ushakov, I.B. The Use of Radioprotective Agents to Prevent Effects Associated with Aging. Biol Bull Russ Acad Sci 46, 1657–1670 (2019). https://doi.org/10.1134/S1062359019120021

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019120021

Keywords:

Navigation