Skip to main content
Log in

EPR Spectrometric Estimation of the Distribution of Intravenously Injected Nanodiamonds in Mice

  • HUMAN AND ANIMAL PHYSIOLOGY
  • Published:
Biology Bulletin Aims and scope Submit manuscript

Abstract

The distribution in mice of intravenously injected modified nanodiamonds (MNDs) obtained by detonation synthesis was studied using electron paramagnetic resonance (EPR) spectrometry. It has been shown that 2.5 h after MND injection into the tail vein of mice, the nanoparticles accumulate mainly in the lungs and liver of animals; much smaller amounts of nanoparticles were found in the kidneys and heart. The presence of MNDs in the samples of blood, spleen, brain, and thigh muscles of mice was not detected within the sensitivity of the method used.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. Artiles, M., Rout, C.S., and Fisher, T.S., Graphene-based hybrid materials and devices for biosensing, Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 1352–1360.

    Article  CAS  PubMed  Google Scholar 

  2. Baron, A.V., Osipov, N.V., Olkhovskiy, I.A., Puzyr, A.P., and Bondar, V.S., Binding the immunoglobulins of human serum by nanodiamonds, Dokl. Biochem. Biophys., 2014, vol. 457, pp. 158–159.

    Article  CAS  PubMed  Google Scholar 

  3. Baron, A.V., Osipov, N.V., Yashchenko, S.V., Kokotukha, Yu.A., Baron, I.I., Puzyr, A.P., Olkhovskiy, I.A., and Bondar, V.S., Adsorption of viral particles from the blood plasma of patients with viral hepatitis on nanodiamonds, Dokl. Biochem. Biophys., 2016, vol. 469, pp. 244–246.

    Article  CAS  PubMed  Google Scholar 

  4. Bondar, V.S. and Puzyr, A.P., Nanodiamonds for biological investigations, Phys. Solid State, 2004, vol. 46, pp. 716–719.

    Article  CAS  Google Scholar 

  5. Bondar, V.S., Pozdnyakova, I.O., and Puzyr, A.P., Applications of nanodiamonds for separation and purification of proteins, Phys. Solid State, 2004, vol. 46, pp. 758–760.

    Article  CAS  Google Scholar 

  6. Carbon Nanomaterials for Biomedical Applications, Zhang, M., Naik, R.R., and Dai, L., Eds., New York: Springer, 2016.

    Google Scholar 

  7. Danilenko, V.V., On the history of the discovery of nanodiamond synthesis, Phys. Solid State, 2004, vol. 46, pp. 595–599.

    Article  CAS  Google Scholar 

  8. Ding, X., Liu, J., Li, J., Wang, F., Wang, Y., Song, S., and Zhang, H., Polydopamine coated manganese oxide nanoparticles with ultrahigh relaxivity as nanotheranostic agents for magnetic resonance imaging guided synergetic chemo-/photothermal therapy, Chem. Sci., 2016, vol. 7, pp. 6695–6700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Fisher, P. and Fadley, C.S., Probing nanoscale behavior of magnetic materials with soft X-ray spectroscopy, Nanotech. Rev., 2012, vol. 1, pp. 5–15.

    Google Scholar 

  10. Gutwein, L.G. and Webster, T.J., Osteoblast and chondrocyte proliferation in the presence of aluminia and titania nanoparticles, J. Nanopart. Res., 2002, vol. 4, pp. 231–238.

    Article  CAS  Google Scholar 

  11. Ishchenko, L.A., Stolyar, S.V., Ladygina, V.P., Raikher, Yu.L., Balasoiu, M., Bayokov, O.A., Iskhakov, R.S., and Inzhevatkin, E.V., Magnetic properties and application of biomineral particles produced by bacterial culture, Phys. Procedia, 2010, vol. 9, pp. 279–282.

    Article  CAS  Google Scholar 

  12. Jin-Wook, Y., Nishit, D., and Samir, M., Adaptive micro and nanoparticles: temporal control over carrier properties of faciliate drug delivery, Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 1247–1256.

    Article  CAS  Google Scholar 

  13. Kaur, P. and Badea, I., Nanodiamonds as novel nanomaterials for biomedical applications: drug delivery and imaging, Int. J. Nanomed., 2013, vol. 8, pp. 203–220.

    Article  CAS  Google Scholar 

  14. Kharisov, B.I., Kharissova, O.V., and Chavez-Guerrero, L., Synthesis techniques, properties, and applications of nanodiamonds, Synth. React. Inorg., Metal-Org., Nano-Metal Chem., 2010, vol. 40, pp. 84–101.

    CAS  Google Scholar 

  15. Kozak, O., Sudolska, M., Pramanik, G., Cígler, P., Otyepka, M., and Zboȓil, R., Photoluminescent carbon nanostructures, Chem. Mater., 2016, vol. 28, pp. 4085–4128.

    Article  CAS  Google Scholar 

  16. Krueger, A., New carbon materials: biological applications of functionalized nanodiamond materials, Chem.-Eur. J., 2008, vol. 14, pp. 1382–1390.

    Article  CAS  PubMed  Google Scholar 

  17. Kumar, A., Fullerenes for biomedical applications, J. Environ. Appl. Biores., 2015, vol. 3, pp. 175–191.

    Google Scholar 

  18. Lad, A. and Agrawal, Y.K., Nanodevices for monitoring toxicological behavior of therapeutic agent, Rev. Nanosci. Nanotech., 2012, vol. 1, pp. 217–227.

    Article  CAS  Google Scholar 

  19. Lamanna, G., Battigelli, A., Menard-Moyon, C., and Bianco, A., Multifunctionalized carbon nanotubes as advanced multimodal nanomaterials for biomedical applications, Nanotech. Rev., 2012, vol. 1, pp. 17–29.

    Article  CAS  Google Scholar 

  20. Lynch, I. and Dawson, K.A., Protein-nanoparticle interactions, Nano Today, 2008, vol. 3, pp. 40–47.

    Article  CAS  Google Scholar 

  21. Maas, M., Carbon nanomaterials as antibacterial colloids, Materials, 2016, vol. 9, pp. 617–636.

    Article  CAS  PubMed Central  Google Scholar 

  22. Medvedeva, N.N., Zhukov, E.L., Inzhevatkin, E.V., and Bezzabotnov, V.E., Antitumor properties of modified detonation nanodiamonds and sorbed doxorubicin on the model of Ehrlich ascites carcinoma, Bull. Exp. Biol. Med., 2016, vol. 160, pp. 372–375.

    Article  CAS  PubMed  Google Scholar 

  23. Mendes, R.G., Bachmatiuk, A., and Buchner, B., Carbon nanostructures as multi-functional drug delivery platforms, J. Mater. Chem. B, 2013, vol. 1, pp. 401–428.

    Article  CAS  Google Scholar 

  24. Mochalin, V.N., Shenderova, O., Ho, D., and Gogotsi, Y., The properties and applications of nanodiamonds, Nat. Nanotechnol., 2011, vol. 7, pp. 11–23.

    Article  CAS  PubMed  Google Scholar 

  25. Mogilnaya, O.A. and Bondar, V.S., Antibacterial properties of lysozyme immobilized on nanodiamonds, Micro Nanosyst., 2012, vol. 4, pp. 41–47.

    Article  CAS  Google Scholar 

  26. Monaco, A.M. and Giugliano, M., Carbon-based smart nanomaterials in biomedicine and neuroengineering, Beilstein J. Nanotechnol., 2014, vol. 5, pp. 1849–1863.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Morachis, J.M., Mahmoud, E.A., and Almutairi, A., Physical and chemical strategies for therapeutic delivery by using polymeric nanoparticles, Pharmacol. Rev., 2012, vol. 64, pp. 505–519.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Nanotechnology in Biology and Medicine: Methods, Devices, and Applications, Vo-Dinh, T., Ed., New York: CRC Press, 2006.

  29. Plank, C., Zelphati, O., and Mykhalik, O., Magnetically enhanced nucleic acid delivery, Adv. Drug Deliv. Rev., 2011, vol. 63, pp. 1300–1331.

    Article  CAS  PubMed  Google Scholar 

  30. Prokhorenkov, V.I., Vasil’eva, E.Yu., Puzyr, A.P., and Bondar, V.S., Effects of nanodiamonds of explosive synthesis on the skin of experimental animals locally exposed to cobalt and chrome ions, Bull. Exp. Biol. Med., 2014, vol. 158, pp. 264–267.

    Article  CAS  PubMed  Google Scholar 

  31. Purtov, K.V., Burakova, L.P., Puzyr, A.P., and Bondar, V.S., Interaction of linear and ring forms of DNA molecules with nanodiamonds synthesized by detonation, Nanotecnology, 2008, vol. 19, pp. 1–3.

    Article  CAS  Google Scholar 

  32. Purtov, K.V., Petunin, A.I., Burov, A.E., Puzyr, A.P., and Bondar, V.S., Nanodiamonds as carriers for address delivery of biologically active substances, Nanoscale Res. Lett., 2010, vol. 5, pp. 631–636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Purtov, K., Petunin, A., Inzhevatkin, E., Burov, A., Ronzhin, N., Puzyr, A., and Bondar, V., Biodistribution of different sized nanodiamonds in mice, J. Nanosci. Nanotech., 2015, vol. 15, pp. 1070–1075.

    Article  CAS  Google Scholar 

  34. Puzyr, A.P. and Bondar, V.S., Method of production of nanodiamonds of explosive synthesis with an increased colloidal stability, RF Patent no. 2252192, Bull. no. 14, 2005.

  35. Puzyr, A.P., Neshumayev, D.A., Tarskikh, S.V., Makarskaya, G.V., Dolmatov, V.Yu., and Bondar, V.S., Destruction of human blood cells in interaction with detonation nanodiamonds in experiments in vitro, Diam. Relat. Mater., 2004, vol. 13, pp. 2020–2023.

    Article  CAS  Google Scholar 

  36. Puzyr, A.P., Bondar, V.S., Bukayemsky, A.A., Selyutin, G.E., and Kargin, V.F., Physical and chemical properties of modified nanodiamonds, NATO Sci. Ser. II. Math. Phys. Chem., 2005, vol. 192, pp. 261–270.

    CAS  Google Scholar 

  37. Puzyr, A.P., Purtov, K.V., Shenderova, O.A., Luo, M., Brenner, D.W., and Bondar, V.S., The adsorption of aflatoxin b1 by detonation-synthesis nanodiamonds, Dokl. Biochem. Biophys., 2007a, vol. 417, pp. 299–301.

    Article  CAS  PubMed  Google Scholar 

  38. Puzyr, A.P., Baron, A.V., Purtov, K.V., Bortnikov, E.V., Skobelev, N.N., Mogilnaya, O.A., and Bondar, V.S., Nanodiamonds with novel properties: a biological study, Diam. Relat. Mater., 2007b, vol. 16, pp. 2124–2128.

    Article  CAS  Google Scholar 

  39. Ronzhin, N.O., Baron, A.V., Mamaeva, E.S., Puzyr, A.P., and Bondar, V.S., Nanodiamond-based tests systems for biochemical determination of glucose and cholesterol, J. Biomater. Nanobiotech., 2013, vol. 4, pp. 242–246.

    Article  CAS  Google Scholar 

  40. Ronzhin, N.O., Puzyr, A.P., and Bondar, V.S., On the applicability of nanodiamonds produced by detonation synthesis for phenol testing in aqueous media, Dokl. Chem., 2017, vol. 475, no. 1, pp. 155–158.

    Article  CAS  Google Scholar 

  41. Say, J.M., van Vreden, C., Reilly, D.J., Brown, L.J., Rabeau, J.R., and King, N.J.C., Luminescent nanodiamonds for biomedical applications, Biophys. Rev., 2011, vol. 3, pp. 171–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schrand, A.M., Hens, S.A.C., and Shenderova, O.A., Nanodiamond particles: properties and perspectives for bioapplications, Crit. Rev. Solid State Mater. Sci., 2009, vol. 34, pp. 18–74.

    Article  CAS  Google Scholar 

  43. Shugalei, I.V., Voznyakovskii, A.P., Garabadzhiu, A.V., Tselinskii, I.V., Sudarikov, A.M., and Ilyushin, M.A., Biological activity of detonation nanodiamond and prospects in its medical and biological applications, Russ. J. Gen. Chem., 2013, vol. 83, pp. 851–883.

    Article  CAS  Google Scholar 

  44. Slegerova, J., Rehor, I., Havlik, J., Raabova, H., Muchova, E., and Cigler, P., Nanodiamonds as intracellular probes for imaging in biology and medicine, in Fundamental Biomedical Technologies 7, Intracellular Delivery II, Prokop, A., Iwasaki, Y., and Harada, A., Eds., Dordrecht: Springer Science+Business Media, 2014, pp. 363–401.

  45. Soltamova, A.A., Il’in, I.V., Shakhov, F.M., Kidalov, S.V., Vul’, A.Ya., Yavkin, B.V., Mamin, G.V., Orlinskii, S.B., and Baranov, P.G., Electron paramagnetic resonance detection of the giant concentration of nitrogen vacancy defects in sintered detonation nanodiamonds, J. Exp. Theor. Phys. Lett., 2010, vol. 92, no. 2, pp. 102–106.

    Article  CAS  Google Scholar 

  46. Sung, J.C. and Lin, J., Diamond Nanotechnology: Syntheses and Applications, Singapore: Pan Stanford Publishing Pte. Ltd., 2010.

    Google Scholar 

  47. Surendiran, A., Sandhiya, S., Pradhan, S.C., and Adithan, C., Novel applications of nanotechnology in medicine, Indian J. Med. Res., 2009, vol. 130, pp. 689–701.

    CAS  PubMed  Google Scholar 

  48. Thanh, N.T.K. and Green, L.A.W., Functionalisation of nanoparticles for biomedical applications, Nano Today, 2010, vol. 5, pp. 213–230.

    Article  CAS  Google Scholar 

  49. Tran, P.A., Zhang, L., and Webster, T.J., Carbon nanofibers and carbon nanotubes in regenerative medicine, Adv. Drug Deliv. Rev., 2009, vol. 61, pp. 1097–1114.

    Article  CAS  PubMed  Google Scholar 

  50. Vasilyeva, E.Yu., Prokhorenkov, V.I., Puzyr, A.P., and Bondar, V.S., The effects of nanodiamonds at the action of colored metal ions on the skin of guinea pigs, J. Biomater. Nanobiotech., 2016, vol. 7, pp. 214–224.

    Article  CAS  Google Scholar 

  51. Wang, D.X., Tong, Y.L., Li, Y.Q., Tian, Z.M., Cao, R.X., and Yang, B.S., PEGylated nanodiamond for chemotherapeutic drug delivery, Diam. Relat. Mater., 2013, vol. 36, pp. 26–34.

    Article  CAS  Google Scholar 

  52. Xiao, J., Duan, X., Yin, Q., Zhang, Z., Yu, H., and Li, Y., Nanodiamonds-mediated doxorubicin nuclear delivery to inhibit lung metastasis of breast cancer, Biomaterials, 2013, vol. 34, pp. 9648–9656.

    Article  CAS  PubMed  Google Scholar 

  53. Zamborini, F.P., Bao, L., and Dasari, R., Nanoparticles in measurement science, Anal. Chem., 2012, vol. 84, pp. 541–576.

    Article  CAS  PubMed  Google Scholar 

  54. Zhang, X., Wang, A.Q., Liu, M., Hui, J., Yang, B., Tao, L., and Wei, Y., Surfactant-dispersed nanodiamond: biocompatibility evaluation and drug delivery applications, Toxicol. Res., 2013, vol. 2, pp. 335–342.

    Article  CAS  Google Scholar 

  55. Zhou, Z., Liposome formulation of fullerene-based molecular diagnostic and therapeutic agents, Pharmaceutics, 2013, vol. 5, pp. 525–541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhu, Y., Li, J., Zhang, Y., Yang, X., Chen, N., Sun, Y., Zhao, Y., Fan, C., and Huang, Q., The biocompatibility of nanodiamonds and their application in drug delivery systems, Teranostics, 2012, vol. 2, pp. 302–312.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Inzhevatkin.

Additional information

Translated by G. Levit

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Inzhevatkin, E.V., Baron, A.V., Maksimov, N.G. et al. EPR Spectrometric Estimation of the Distribution of Intravenously Injected Nanodiamonds in Mice. Biol Bull Russ Acad Sci 46, 277–283 (2019). https://doi.org/10.1134/S1062359019020079

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062359019020079

Navigation