Skip to main content
Log in

Hybrid Nanocomposites as Electrode Modifiers in Amperometric Immunosensors for the Determination of Amitriptyline

  • ARTICLES
  • Published:
Journal of Analytical Chemistry Aims and scope Submit manuscript

Abstract

Various nanostructured materials (graphene, fullerene C60, carbon nanotubes, and cobalt nanoparticles as a label) are used as nanocomposites to modify the surface of primary signal converters (screen-printed graphite electrode) in the development of amperometric immunosensors for the determination of tricyclic antidepressant amitriptyline. The use of nanomaterials improved the analytical characteristics of the corresponding immunosensors. The range of working concentrations of the immunosensor is 1 × 10–9–1 × 10–4 M, the lower limit of the analytical range is at a level of 5 × 10–10 M. The binding constants of antigen–antibody immune complexes are determined. Immunosensors are tested in the control of contents of medicinal preparations in urine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Bisceglia, K.J., Yu, J.T., Coelhan, M., Bouwer, E.J., and Roberts, A.L., J. Chromatogr. A, 2010, vol. 1217, p. 558.

    Article  CAS  Google Scholar 

  2. Bakera, D.R. and Kasprzyk-Hordern, B., J. Chromatogr. A, 2011, vol. 1218, p. 7901.

    Article  Google Scholar 

  3. Albero, B., Sánchez-Brunete, C., Miguel, E., Aznar, R., and Tadeo, J.L., J. Chromatogr. A, 2014, vol. 1336, p. 52.

    Article  CAS  Google Scholar 

  4. Truta, L.A.A.N.A., Moreira, F.T.C., Sales, M.G.F., Biosens. Bioelectron., 2018, vol. 107, p. 94.

    Article  CAS  Google Scholar 

  5. Suresh, L., Brahman, P.K., Reddy, K.R., and Bondili, J.S., Enzyme Microb. Technol., 2018, vol. 112, p. 43.

    Article  CAS  Google Scholar 

  6. Li, W., Shu, D., Zhang, D., and Ma, Z., Sens. Actuators, B, 2018, vol. 262, p. 50.

    Article  CAS  Google Scholar 

  7. Zhu, C., Du, D., and Lin, Y., Biosens. Bioelectron., 2017, vol. 89, p. 43.

    Article  CAS  Google Scholar 

  8. Maduraiveeran, G. and Jin, W., TrAC,Trends Environ. Anal. Chem., 2017, vol. 13, p. 10.

    Article  CAS  Google Scholar 

  9. Merum, S., Veluru, J.B., and Seeram, R., Mater. Sci. Eng., B, 2017, vol. 223, p. 43.

    Article  CAS  Google Scholar 

  10. Lan, L., Yao, Y., Ping, J., and Ying, Y., Biosens. Bioelectron., 2017, vol. 91, p. 504.

    Article  CAS  Google Scholar 

  11. Gaudin, V., Biosens. Bioelectron., 2017, vol. 90, p. 363.

    Article  CAS  Google Scholar 

  12. Woźniakiewicz, M., Wietecha-Posłuszny, R., Garbacik, A., and Kościelniak, P., J. Chromatogr. A, 2008, vol. 1190, p. 52.

    Article  Google Scholar 

  13. De Castro, A., del Mar Ramírez Fernandez, M., Laloup, M., Samyn, N., De Boeck, G., Wood, M., Maes, V., and López-Rivadull, M., J. Chromatogr. A, 2007, vol. 1160, p. 3.

    Article  CAS  Google Scholar 

  14. Zhang, Y., Ma, H., Wu, D., Li, Y., Du, B., and Wei, Q., J. Electroanal. Chem., 2015, vol. 741, p. 14.

    Article  CAS  Google Scholar 

  15. Jain, R., Jadon, N., and Pawaiya, A., TrAC,Trends Anal. Chem., 2017, vol. 97, p. 363.

    Article  CAS  Google Scholar 

  16. Yang, N., Chena, X., Ren, T., Zhang, P., and Yang, D., Sens. Actuators, B, 2015, vol. 207, p. 690.

    Article  CAS  Google Scholar 

  17. Hasanzadeh, M., Shadjou, N., Eskandani, M., Soleymani, J., Jafari, F., and de la Guardia, M., TrAC,Trends Anal. Chem., 2014, vol. 53, p. 137.

    Article  CAS  Google Scholar 

  18. Cong, F. and Jian-Ping, L., Chin. J. Anal. Chem., 2013, vol. 41, no. 11, p. 1762.

    Article  Google Scholar 

  19. Prashant, K., Avinash, G., Arun, K.I., Keerti, J., Manish, K.C., and Umesh, G., Drug Discovery Today, 2018, vol. 23, no. 2, p. 300.

    Article  Google Scholar 

  20. Evtugyn, G.A., Eremin, S.A., Shaljamova, R.P., Ismagilova, A.R., and Budnikov, H.C., Biosens. Bioelectron., 2006, vol. 22, p. 56.

    Article  CAS  Google Scholar 

  21. Medyantseva, E.P. and Budnikov, H.C., Butlerovskie Soobshch., 2011, vol. 25, no. 8, p. 9.

    Google Scholar 

  22. He, Z., Zang, S., Liu, Y., He, Y., and Lei, H., Biosens. Bioelectron., 2015, vol. 73, p. 85.

    Article  CAS  Google Scholar 

  23. Dawan, S., Kanatharana, P., Wongkittisuksa, B., Limbut, W., Numnuam, A., Limsakul, C., and Thavarungkul, P., Anal. Chim. Acta, 2011, vol. 699, p. 232.

    Article  CAS  Google Scholar 

  24. Beloglazova, N.V., Shmelin, P.S., and Eremin, S.A., Talanta, 2016, vol. 149, p. 217.

    Article  CAS  Google Scholar 

  25. Song, E., Yu, M., Wang, Y., Hu, W., Cheng, D., Swihart, M.T., and Song, Y., Biosens. Bioelectron., 2015, vol. 72, p. 320.

    Article  CAS  Google Scholar 

  26. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., Maksimov, A.A., Konovalova, O.A., and Budnikov, H.C., J. Anal. Chem., 2017, vol. 72, no. 4, p. 362.

    Article  CAS  Google Scholar 

  27. Benchettara, A. and Benchettara, A., Mater. Today: Proc., 2015, vol. 2, p. 4212.

    Google Scholar 

  28. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., Kutyreva, M.P., Ulakhovich, N.A., Fattakhova, A.N., Konovalova, O.A., and Budnikov, H.C., Russ. J. Appl. Chem., 2017, vol. 90, no. 1, p. 97.

    Article  CAS  Google Scholar 

  29. Brusnitsyn, D.V., Medyantseva, E.P., Varlamova, R.M., Sitdikova, R.R., Fattakhova, A.N., Konovalova, O.A., and Budnikov, H.C., Inorg. Mater., 2016, vol. 52, p. 1413.

    Article  CAS  Google Scholar 

  30. Helia, H. and Pishahang, J., Electrochim. Acta, 2014, vol. 123, p. 518.

    Article  Google Scholar 

  31. Egorov, A.M., Osipov, A.P., Dzantiev, B.B., and Gavrilova, E.M., Teoriya i praktika immunofermentnogo analiza (Theory and Practice of Enzyme Immunoassay), Moscow: Vysshaya Shkola, 1991.

  32. XII Gosudarstvennaya farmakopeya rossiiskoi federatsii (XII State Pharmacopoeia of the Russian Federation), Moscow, 2010, part 2.

  33. Berezov, T.T. and Korovkin, B.F., Biologicheskaya khimiya (Biological Chemistry) Moscow: Meditsina, 1998.

  34. Shaidarova, L.G., Chelnokova, I.A., Romanova, E.I., Gedmina, A.V., and Budnikov, H.K., Russ. J. Appl. Chem., 2011, vol. 84, no. 2, p. 218.

    Article  CAS  Google Scholar 

  35. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., Beshevets, M.A., Budnikov, H.K., and Fattakhova, A.N., J. Anal. Chem., 2015, vol. 70, no. 5, p. 535.

    Article  CAS  Google Scholar 

  36. Medyantseva, E.P., Brusnitsyn, D.V., Varlamova, R.M., Konovalova, O.A., and Budnikov, H.C., Zavod. Lab.,Diagn. Mater., 2018, vol. 54, no. 8, p. 5.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. P. Medyantseva.

Additional information

Translated by V. Kudrinskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Medyantseva, E.P., Brusnitsyn, D.V., Gazizullina, E.R. et al. Hybrid Nanocomposites as Electrode Modifiers in Amperometric Immunosensors for the Determination of Amitriptyline. J Anal Chem 75, 536–543 (2020). https://doi.org/10.1134/S1061934820040103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061934820040103

Keywords:

Navigation