Skip to main content
Log in

Peculiarities of rheological properties and flow of highly concentrated emulsions: The role of concentration and droplet size

  • Published:
Colloid Journal Aims and scope Submit manuscript

Abstract

Results of a complete study of the rheological properties of highly concentrated emulsions of the w/o type with the content of the dispersed phase up to 96% are reported. The aqueous phase is a supersaturated solution of nitrates, where the water content does not exceed 20%. Dispersed droplets are characterized by a polyhedral shape and a broad size distribution. Highly concentrated emulsions exhibit the properties of rheopectic media. In steady-state regimes of shearing, these emulsions behave as viscoplastic materials with a clearly expressed yield stress. Highly concentrated emulsions are characterized by elasticity due to the compressed state of droplets. Shear storage modulus is constant in a wide range of frequencies that reflect solid-like behavior of such emulsions at small deformations. The storage (dynamic) modulus coincides with the elastic modulus measured in terms of the reversible deformations after the cessation of creep. Normal stresses appear in the shearing. In the low shear rate domain, normal stresses do not depend on shear rate, so that it can be assumed that they have nothing in common with normal stresses arising owing to the Weissenberg effect. These normal stresses can be attributed to Reynolds’ dilatancy (elastic dilatancy). Normal stresses sharply decrease beyond some threshold value of the shear rate and slightly increase only in a high shear rate domain. Observed anomalous flow curves and unusual changes of normal stresses with shear rate are explained by the two-step model of emulsion flow. Direct optical observations show that emulsions move by the mechanism of the rolling of larger droplets over smaller ones without noticeable changes of their shape at low shear rates, while strong distortions of the droplet shape is evident at high shear rates. The transition from one mechanism to the other is attributed to a certain critical value of the capillary number. The concentration dependence of the elastic modulus (as well as the yield stress) can be described by the Princen-Kiss model, but this model fails to predict the droplet size dependence of the elastic modulus. Numerous experiments demonstrated that the modulus and yield stress are proportional to the squared reciprocal size, while the Princen-Kiss model predicts their linear dependence on the reciprocal size. A new model based on dimensional arguments is proposed. This model correctly describes the influence of the main structural parameters on the rheological properties of highly concentrated emulsions. The boundaries of the domain of highly concentrated emulsions are estimated on the basis of the measurement of their elasticity and yield stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, G.I., Proc. R. Soc. London, A, 1932, vol. 138, p. 41.

    CAS  Google Scholar 

  2. Pal, R., J. Rheol. (N. Y.), 2001, vol. 45, p. 509.

    CAS  Google Scholar 

  3. Pal, R., J. Colloid Interface Sci., 2003, vol. 263, p. 296.

    Article  CAS  Google Scholar 

  4. Chanamai, R. and McClements, D.J., Colloids Surf., A, 2000, vol. 172, p. 79.

    Article  CAS  Google Scholar 

  5. Jager-Lezer, N., Tranchant, J.F., Alard, C.V., et al., Rheol. Acta, 1998, vol. 37, p. 129.

    Article  CAS  Google Scholar 

  6. Langenfeld, A., Schmitt, V., and Stébé, M.J., J. Colloid Interface Sci., 1999, vol. 218, p. 522.

    Article  CAS  Google Scholar 

  7. Rocca, S. and Stébé, M.-J., J. Phys. Chem., B, 2000, vol. 104, p. 10490.

    Article  CAS  Google Scholar 

  8. Ponton, A., Clément, P., and Grossiord, J.L., J. Rheol. (N. Y.), 2001, vol. 45, p. 521.

    CAS  Google Scholar 

  9. Babak, V.G., Lengfield, A., Fa, N., and Stébé, M.J., Prog. Colloid Polym. Sci., 2001, vol. 118, p. 216.

    Article  CAS  Google Scholar 

  10. Mason, T.G., Bibette, J., and Weitz, D.A., Phys. Rev. Lett., 1995, vol. 75, p. 2051.

    Article  CAS  Google Scholar 

  11. Mason, T.G., Bibette, J., and Weitz, D.A., J. Colloid Interface Sci., 1996, vol. 179, p. 439.

    Article  CAS  Google Scholar 

  12. Derkach, S.R., Levachev, S.M., Kukushkina, A.N., et al., Kolloidn. Zh., 2006, no. 6, p. 769.

  13. Princen, H.M., J. Colloid Interface Sci., 1983, vol. 91, p. 160.

    Article  CAS  Google Scholar 

  14. Princen, H.M., J. Colloid Interface Sci., 1985, vol. 105, p. 150.

    Article  CAS  Google Scholar 

  15. Princen, H.M. and Kiss, A.D., J. Colloid Interface Sci., 1986, vol. 112, p. 427.

    Article  CAS  Google Scholar 

  16. Princen, H.M., J. Colloid Interface Sci., 1989, vol. 128, p. 176.

    Article  CAS  Google Scholar 

  17. Lacasse, M.-D., Grest, G.S., Levine, D., et al., Phys. Rev. Lett., 1996, vol. 76, p. 3448.

    Article  CAS  Google Scholar 

  18. Masalova, I., Malkin, A.Ya., Slatter, P., and Wilson, K., J. Non-Newtonian Fluid Mech., 2003, vol. 112, p. 101.

    Article  CAS  Google Scholar 

  19. Malkin, A.Ya., Masalova, I., Slatter, P., and Wilson, K., Rheol. Acta, 2004, vol. 43, p. 584.

    Article  CAS  Google Scholar 

  20. Masalova, I., Taylor, M., Kharatiyan, E., and Malkin, A.Ya., J. Rheol. (N. Y.), 2005, vol. 49, p. 839.

    CAS  Google Scholar 

  21. Malkin, A.Ya. and Masalova, I., in Advances in Rheology and Its Applications, Luo, Y., Rao, Q., and Xu, Y., Eds., New York: Scientific, 2005, p. 5.

    Google Scholar 

  22. Masalova, I., Malkin, A.Ya., Ferg, E., et al., J. Rheol. (N. Y.), 2006, vol. 50, p. 435.

    CAS  Google Scholar 

  23. Bampfield, H.A. and Cooper, J., in Encyclopedia of Emulsion Technology, New York-Basel: Marcel Dekker, 1985, vol. 7, p. 281.

    Google Scholar 

  24. Pal, R., Colloids Surf., A, 2000, vol. 162, p. 55.

    Article  CAS  Google Scholar 

  25. Malkin, A.Ya. and Isayev, I., in Rheology. Conceptions, Methods and Applications, Toronto: ChemTec, 2006, chap. 3.

    Google Scholar 

  26. Pons, R., Erra, P., Solans, C., et al., J. Phys. Chem., 1992, vol. 97, p. 12320.

    Article  Google Scholar 

  27. Pons, R., Solans, C., and Tadros, Th.F., Langmuir, 1995, vol. 11, p. 1996.

    Article  Google Scholar 

  28. Lodge, A.S., Elastic Liquids, London-New York: Academic, 1964.

    Google Scholar 

  29. Reiner, M., in Handbuch Der Physik. Vol. 6. Elastizität und Plastizität, Berlin: Springer, 1958.

    Google Scholar 

  30. Malkin, A.Ya. and Masalova, I., J. Rheol. (N. Y.) (submitted).

  31. Masalova, I. and Malkin, A.Ya., Appl. Rheol. (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

This work was presented in part at the 4th Pacific Rim Rheological Conference (Shanghai, China, 2005) and the World Congress on Emulsions (Lyon, France, 2006)

Original Russian Text © I. Masalova, A.Ya. Malkin, 2007, published in Kolloidnyi Zhurnal, 2007, Vol. 69, No. 2, pp. 206–219.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Masalova, I., Malkin, A.Y. Peculiarities of rheological properties and flow of highly concentrated emulsions: The role of concentration and droplet size. Colloid J 69, 185–197 (2007). https://doi.org/10.1134/S1061933X0702007X

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1061933X0702007X

Keywords

Navigation