Skip to main content
Log in

Localized light jets from radially symmetric nonspherical dielectric microparticles

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

The results of numerical modeling of the near field of light wave scattering (“photonic (nano)jet”—PNJ region) by radially symmetric nonabsorbing dielectric microparticles are presented. It is shown that the homogeneous silica microparticles of different spatial shape and orientation form PNJ of different sizes and amplitudes. Photonic nanojets from hemispheres are of high extent but moderate intensity. Use of microaxicons provides for a record increase in the PNJ length of the order of twenty wavelengths of the incident radiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Chen, A. Taflove, and V. Backman, “Photonic nanojet enhancement of backscattering of light by nanoparticles: A potential novel visible-light ultramicroscopy technique,” Opt. Express 12 (7), 1214–1220 (2004).

    Article  ADS  Google Scholar 

  2. Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “Control over parameters of photon nanojets of dielectric microspheres,” Opt. Commun. 283 (23), 4775–4781 (2010).

    Article  ADS  Google Scholar 

  3. Yu. E. Geints, E. K. Panina, and A. A. Zemlyanov, “A photonic nanojet calculations in layered radiallyinhomogeneous micrometer-sized spherical particles,” J. Opt. Soc. Amer. 28 (8), 1825–1830 (2010).

    Article  Google Scholar 

  4. A. Heifetz, J. J. Simpson, S.-C. Kong, A. Taflove, and V. Backman, “Subdiffraction optical resolution of a gold nanosphere located within the nanojet of a Mieresonant dielectric microsphere,” Opt. Express 15 (25), 17334–17342 (2007).

    Article  ADS  Google Scholar 

  5. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jets from resonantly-excited transparent dielectric microspheres,” J. Opt. Soc. Amer., B 29 (4), 758–762 (2012).

    Article  ADS  Google Scholar 

  6. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Photonic jet shaping of mesoscale dielectric spherical particles: Resonant and non-resonant jet formation,” J. Quant. Spectrosc. Radiat. Transfer 126, 44–49 (2013).

    Article  ADS  Google Scholar 

  7. A. Devilez, N. Bonod, B. Stout, D. Gerard, J. Wenger, H. Rigneault, and E. Popov, “Three-dimensional subwavelength confinement of light with dielectric microspheres,” Opt. Express 17 (4), 2089–2094 (2009).

    Article  ADS  Google Scholar 

  8. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Features of photonic nanojet formation near surfaces of spherical microparticles illuminated by a focused laser beam,” Atmos. Ocean. Opt. 28 (2), 139–144 (2015).

    Article  Google Scholar 

  9. S.-C. Kong, A. Taflove, and V. Backman, “Quasi onedimensional light beam generated by a graded-index microsphere,” Opt. Express 17 (5), 3722–3731 (2009).

    Article  ADS  Google Scholar 

  10. V. V. Kotlyar and S. S. Stafeev, “Modeling the sharp focus of a radially polarized laser mode using a conical and a binary microaxicon,” J. Opt. Soc. Amer. 27 (10), 1991–1997 (2009).

    Article  Google Scholar 

  11. J. Martin, J. Proust, D. Gerard, J.-L. Bijeon, and J. Plain, “Intense Bessel-like beams arising from pyramid-shaped microtips,” Opt. Lett. 37 (2012).

    Google Scholar 

  12. D. McCloskey, J. J. Wang, and J. F. Donegan, “Low divergence photonic nanojets from Si3N4 microdisks,” Opt. Express 20 (1), 128–140 (2012).

    Article  ADS  Google Scholar 

  13. V. V. Kotlyar, S. S. Stafeev, and A. Feldman, “Photonic nanojets generated using square-profile microsteps,” Appl. Opt. 53 (24), 5322–5329 (2014).

    Article  ADS  Google Scholar 

  14. E. M. Purcell and C. R. Pennypacker, “Scattering and absorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705–714 (1973).

    Article  ADS  Google Scholar 

  15. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for scattering calculations,” J. Opt. Soc. Amer., A 11 (4), 1491–1499 (1994).

    Article  ADS  Google Scholar 

  16. B. T. Draine and P. J. Flatau, “Discrete-dipole approximation for periodic targets: Theory and tests,” J. Opt. Soc. Amer., A 25 (11), 2693–2703 (2008).

    Article  ADS  Google Scholar 

  17. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles, (Wiley, New York, 1983).

    Google Scholar 

  18. R. Harrington, “Origin and development of the method of moments for field computation,” IEEE Antennas Propag. Mag. 32 (3), 31 (1990).

    Article  MathSciNet  ADS  Google Scholar 

  19. G. H. Goedecke and S. G. O’Brien, “Scattering by irregular inhomogeneous particles via the digitized Green’s function algorithm,” Appl. Opt. 27 (12), 2431–2438 (1988).

    Article  ADS  Google Scholar 

  20. Yu. E. Geints, A. A. Zemlyanov, and E. K. Panina, “Comparative analysis of spatial shapes of photonic jets from spherical dielectric microparticles,” Atmos. Ocean. Opt. 25 (5), 338–344 (2012).

    Article  Google Scholar 

  21. V. N. Astratov, A. Darafsheh, M. D. Kerr, K. W. Allen, N. M. Fried, A. N. Antoszyk, and H. S. Ying, “Photonic nanojets for laser surgery,” SPIE Newsroom (2010). doi 10.1117/2.1201002.002578

    Google Scholar 

  22. V. Garces-Chavez, D. McGloin, H. Melville, W. Sibbett, and K. Dholakia, “Simultaneous micromanipulation in multiple planes using a self-reconstructing light beam,” Nature (Gr. Brit.) 419, 145–147 (2002).

    Article  ADS  Google Scholar 

  23. S. Kawata and T. Sugiura, “Movement of micrometersized particles in the evanescent field of a laser beam,” Opt. Lett. 17 (11), 772–774 (1992).

    Article  ADS  Google Scholar 

  24. K. Taguchi, H. Ueno, T. Hiramatsu, and M. Ikeda, “Optical trapping of dielectric particle and biological cell using optical fibre,” Electron. Lett. 33 (5), 413–414 (1997).

    Article  Google Scholar 

  25. D. Zeng, W. P. Latham, and A. Kar, “Characteristic analysis of a refractive axicon system for optical trepanning,” Opt. Eng. 45 (9), 094302 (2006).

    Article  ADS  Google Scholar 

  26. H. J. Munzer, M. Mosbacher, M. Bertsch, J. Zimmermann, P. Leiderer, and J. Boneberg, “Local field enhancement effects for nanostructuring of surfaces,” J. Microsc. 202 (1), 129–135 (2001).

    Article  MathSciNet  Google Scholar 

  27. X. Li, Z. Chen, A. Taflove, and V. Backman, “Optical analysis of nanoparticles via enhanced backscattering facilitated by 3-D photonic nanojets,” Opt. Express 13 (22), 526–533 (2005).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. E. Geints.

Additional information

Original Russian Text © Yu.E. Geints, A.A. Zemlyanov, E.K. Panina, 2015, published in Optika Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geints, Y.E., Zemlyanov, A.A. & Panina, E.K. Localized light jets from radially symmetric nonspherical dielectric microparticles. Atmos Ocean Opt 28, 436–440 (2015). https://doi.org/10.1134/S1024856015050048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856015050048

Keywords

Navigation