Skip to main content
Log in

Retrieval of the mass concentration of dust in industrial emissions from optical sensing data

  • Optics of Clusters, Aerosols, and Hydrosoles
  • Published:
Atmospheric and Oceanic Optics Aims and scope Submit manuscript

Abstract

A statistical microphysical model of the dust, emitted into the atmosphere by cement enterprises, is developed, which allows for possible variations in the chemical composition of particles, their concentrations, and size distribution function. An ensemble of microphysical parameters of dust was simulated and the extinction coefficient was calculated at wavelengths of 0.355, 0.532, 1.064, 1.25, 1.56, 1.67, and 2.14 μm from the “windows of transparency” of exhaust gas at cement enterprises. The errors of retrieval of the mass concentration of dust from the data of optical sensing at wavelengths of a Nd:YAG-laser with third harmonic generation, are estimated on the basis of a multiple regression method. The sets of two (0.532 and 2.14 μm) and three (0.532, 1.56, and 2.14 μm) wavelengths of optical sensing are ascertained, which are optimal in terms of their information content about the concentration and the resistance of the corresponding solutions of the inverse problem to measurement errors, and the effect of dust particle shape. Dependencies of errors of concentration retrieval, from the extinction coefficient at optimal wavelengths, on the optical measurement error are calculated. A tight correlation between the dust concentration and its extinction coefficient at a wavelength of 2.14 μm was derived; it allows retrieval of the concentration from fixed-frequency optical sensing data with an error of about 8%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. P. Klimenko, V. I. Korolev, and V. I. Shevtsov, Continuous Monitoring of Dust Concentration (Tekhnika, Kiev, 1980) [in Russian].

    Google Scholar 

  2. A. B. Lapshin, Dust Removing Techniques in Cement Production (Stromekologiya, Novorossiisk, 1995) [in Russian], 150 pp.

    Google Scholar 

  3. S. S. Khmelevtsov, V. A. Korshunov, V. M. Nikitin, and V. V. Kobelev, “Multiwavelength and Polarization Lidar Sounding of Industrial Aerosol Emissions,” Atmos. Ocean. Opt. 18(3), 212–217 (2005).

    Google Scholar 

  4. M. M. Kugeiko, S. A. Lysenko, and S. M. Kolchinskii, “Dual-Beam Laser Location Technique for Detection of Optical Parameters of Emissions from Pipes of Industrial Enterprises,” Vestn. BGU, Ser. 1, No. 2, 14–19 (2009).

  5. M. M. Kugeiko and S. V. Kvachenok, “On Distinguishing of Boundaries of Nonuniformity in Laser-Location Researches,” Vestn. BGU, Ser. 1, No. 2, 22–26 (2007).

  6. V. E. Zuev and V. V. Zuev, Remote Optical Sensing of the Atmosphere (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].

    Google Scholar 

  7. V. E. Zuev and I. E. Naats, Reverse Problems of Atmospheric Optics (Gidrometeoizdat, Leningrad, 1990) [in Russian].

    Google Scholar 

  8. M. I. Mishcenko, L. D. Travis, and A. A. Lacis, Scattering, Absorption, and Emission of Light by Small Particles (NASA Goddard Institute for Space Studies, New York, 2004).

    Google Scholar 

  9. C. Bohren and D. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, New York, 1983).

    Google Scholar 

  10. A. P. Chaikovskii, A. P. Ivanov, Yu. S. Balin, A. V. El’nikov, G. F. Tulinov, I. I. Plyusnin, O. A. Bukin, and B. B. Chen, “CIS-LiNet Lidar Network for Monitoring Aerosol and Ozone: Methodology and Instrumentation,” Atmos. Ocean. Opt. 18(12), 958–964 (2005).

    Google Scholar 

  11. A. V. El’nikov, V. D. Burlakov, S. I. Dolgii, V. V. Zuev, A. V. Nevzorov, I. I. Plyusnin, S. M. Sysoev, K. I. Bushmeleva, and M. S. Chernyi, “Lidar System for Sounding Aerosol in SURGUT City under the CIS-LiNet Project,” Atmos. Ocean. Opt. 19(11), 882–885 (2006).

    Google Scholar 

  12. I. V. Samokhvalov, S. M. Bobrovnikov, P. P. Geiko, A. V. El’nikov, B. V. Kaul’, “Development of Tomsk State University Lidar as a Unique Complex for Atmospheric Monitoring,” Atmos. Ocean. Opt. 19(11), 895–899 (2006).

    Google Scholar 

  13. S. A. Lysenko and M. M. Kugeiko, “Regression Approach to Analyzing the Informativity and Interpretation of Aerosol Optical Measurements,” J. Appl. Spectr. 76(6), 826–832 (2009).

    Article  ADS  Google Scholar 

  14. E. M. Dianov, “Fiber Lasers,” Physics-Uspekhi 47(10), 1065–1058 (2004).

    Article  ADS  Google Scholar 

  15. G. G. Matvienko, V. V. Veretennikov, G. M. Krekov, and M. M. Krekova, “Remote Sensing of Atmospheric Aerosols with a White-Light Femtosecond Lidar. Part 1. Numerical Simulation,” Atmos. Ocean. Opt. 16(12), 1013–1019 (2003).

    Google Scholar 

  16. E. B. Khobotova, M. I. Ukhaneva, T. A. Semenovich, O. G. Makhova, and N. M. Panteleeva, “Detection of Chemical and Disperse Compositions of Cement Dust,” in Scientific-Research Collection Municipal Engineering, No. 60, 119–123 (2004) [in Russian].

  17. H. F. W. Taylor, Cement Chemistry (Academic Press, London, 1990), 475 pp.

    Google Scholar 

  18. www.lgcstandards.com

  19. V. E. Zuev, and G. M. Krekov, Optical Models of the Atmosphere (Gidrometeoizdat, Leningrad, 1986).

    Google Scholar 

  20. L. S. Rothman, C. P. Rinsland, A. Goldman, S. T. Massie, D. P. Edwards, J.-M. Flaud, A. Perrin, C. Camy-Peyret, V. Dana, J.-Y. Mandin, J. Schroeder, A. Mccann, R.-R. Gamache, R. B. Watson, K. Yoshino, K. V. Chance, K. W. Jucks, L. R. Brown, V. Nemtchinov, and P. Varanasi, “The HITRAN Molecular Spectroscopic Database and Hawks (Hitran Atmospheric Workstation): 1996 EDITION,” J. Quant. Spectrosc. and Radiat. Transfer 60(5), 665–710. (1998).

    Article  ADS  Google Scholar 

  21. http://refractiveindex.info

  22. C. J. Liu and E. F. Sieckmann, “Refractive Index of Calcium Oxide,” J. Appl. Phys. 37(6), 2450–2452 (1966).

    Article  ADS  Google Scholar 

  23. http://www.wikipedia.org

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © S.A. Lysenko, M.M. Kugeiko, 2012, published in Optica Atmosfery i Okeana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lysenko, S.A., Kugeiko, M.M. Retrieval of the mass concentration of dust in industrial emissions from optical sensing data. Atmos Ocean Opt 25, 35–43 (2012). https://doi.org/10.1134/S1024856012010095

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1024856012010095

Keywords

Navigation