Skip to main content
Log in

Electrochemical Synthesis of Multilayered Graphene and Its Use in Co–N–C Electrocatalysts of Oxygen Reduction and Hydrogen Evolution

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

It is shown that the use of aqueous electrolytes based on salts of various aromatic carboxylic acids in the course of electrochemical exfoliation of graphite allows producing multilayered graphene (MLG) and protects it from the negative oxidative action of oxygen-containing radicals, in particular, OH radicals formed at water electrolysis on the graphite anode. It is shown that the electrochemically synthesized MLG can be used for the formation of noble-metal-free carbonized nanocomposite Co–N–C electrocatalysts of the oxygen reduction reaction (ORR) and the hydrogen evolution reaction (HER). Such poly-2,6-diaminopyridine-based catalysts in aqueous 0.5 М H2SO4 are shown to surpass their acetylene black-based analogues as regards their functional characteristics in ORR and HER and also are highly tolerant with respect to CO and methanol in the course of oxygen reduction. Based on experimental data, it is concluded that the predominant active centers in Co–N–C electrocatalysts based on MLG and acetylene black are of the different nature and that the same active centers are involved in ORR and HER.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Zhong, Y.L., Tian, Z., Simon, G.P., and Li, D., Scalable production of graphene via wet chemistry: progress and challenges, Mater. Today, 2015, vol. 18, no. 2, p. 73.

    Article  CAS  Google Scholar 

  2. Paredes, J.I. and Munuera, J.M., Recent advances and energy-related applications of high quality/chemically doped graphenes obtained by electrochemical exfoliation methods, J. Mater. Chem. A, 2017, vol. 5, p. 7228.

    Article  CAS  Google Scholar 

  3. Ambrosi, A. and Pumera, M., Exfoliation of layered materials using electrochemistry, Chem. Soc. Rev., 2018, vol. 47, no. 19, p. 7213.

    Article  CAS  Google Scholar 

  4. Parvez, K., Li, R., Puniredd, S.R., Hernandez, Y., Hinkel, F., Wang, S., Feng, X., and Müllen, K., Electrochemically exfoliated graphene as solution-processable, highly conductive electrodes for organic electronics, ACS Nano, 2013, vol. 7, no. 4, p. 3598.

    Article  CAS  Google Scholar 

  5. Liu, J., Poh, C.K., Zhan, D., Lai, L., Lim, S.H., Wang, L., Liu, X., Sahoo, N.G., Li, C., Shen, Z., and Lin, J., Improved synthesis of graphene flakes from the multiple electrochemical exfoliation of graphite rod, Nano Energy, 2013, vol. 2, no. 3, p. 377.

    Article  CAS  Google Scholar 

  6. Qi, B., He, L., Bo, X., Yang H., and Guo, L., Electrochemical preparation of free-standing few-layer graphene through oxidation–reduction cycling, Chem. Eng. J., 2011, vol. 171, no. 1, p. 340.

    Article  CAS  Google Scholar 

  7. Rao, K.S., Senthilnathan, J., Liu, Y.-F., and Yoshimura, M., Role of peroxide ions in formation of graphene nanosheets by electrochemical exfoliation of graphite, Sci. Rep., 2014, vol. 4, p. 4237.

    Article  Google Scholar 

  8. Parvez, K., Wu, Z.-S., Li, R., Liu, X., Graf, R., Feng, X., and Müllen, K., Exfoliation of graphite into graphene in aqueous solutions of inorganic salts, J. Amer. Chem. Soc., 2014, vol. 136, no. 16, p. 6083.

    Article  CAS  Google Scholar 

  9. Krivenko, A.G., Manzhos, R.A., Komarova, N.S., Kotkin, A.S., Kabachkov, E.N., and Shul’ga, Yu.M., Comparative study of graphite and the products of its electrochemical exfoliation, Russ. J. Electrochem., 2018, vol. 54, p. 825.

    Article  CAS  Google Scholar 

  10. Mahanandia, P., Simon, F., Heinrich, G., and Nanda, K.K., An electrochemical method for the synthesis of few layer graphene sheets for high temperature applications, Chem. Commun., 2014, vol. 50, no. 35, p. 4613.

    Article  CAS  Google Scholar 

  11. Ustavytska, O., Kurys, Ya., Koshechko, V., and Pokho-denko, V., One-step electrochemical preparation of multilayer graphene functionalized with nitrogen, Nanoscale Res. Lett., 2017, vol. 12, p. 175.

    Article  Google Scholar 

  12. Zhou, N., Wang, N., Wu, Z., and Li, L., Probing active sites on metal-free, nitrogen-doped carbons for oxygen electroreduction: a review, Catalysts, 2018, vol. 8, p. 509.

    Article  Google Scholar 

  13. Yan, X., Jia, Y., and Yao, X., Defects on carbons for electrocatalytic oxygen reduction, Chem. Soc. Rev., 2018, vol. 47, p. 7628.

    Article  CAS  Google Scholar 

  14. Tarasevich, M.R. and Davydova, E.S., Nonplatinum cathodic catalysts for fuel cells with alkaline electrolyte (Review), Russ. J. Electrochem., 2016, vol. 52, p. 193.

    Article  CAS  Google Scholar 

  15. Kurys, Ya.I., Ustavytska, O.O., Koshechko, V.G., and Pokhodenko, V.D., Structure and electrochemical properties of multilayer graphene prepared by electrochemical exfoliation of graphite in presence of benzoate ions, RSC Adv., 2016, vol. 6, no. 42, p. 36050.

    Article  CAS  Google Scholar 

  16. Organic Electrochemistry: an Introduction and a Guide, 2nd Ed., Baizer, M.M. and Lund, H., Eds., New York: Marcel Dekker, 1983.

    Google Scholar 

  17. Anodic Oxidation. Organic Chemistry: A Series of Monographs, vol. 32, Ross, S.D., Finkelstein, M., and Rudd, E.J., Eds., New York: Academic Press, 1975.

    Google Scholar 

  18. Linstead, R.P., Shephard, B.R., and Weedon, B.C.L., Anodic syntheses. Part VII. Electrolyses of mono-, di-, and tri-phenylacetic acids in non-aqueous solutions, J. Chem. Soc., 1952, p. 3624.

  19. Sandhwar, V.K. and Prasad, B., A comparative study of electrochemical degradation of benzoic acid and terephthalic acid from aqueous solution of purified terephthalic acid (PTA) wastewater, J. Water Process Eng., 2019, vol. 30, p. 100381.

    Article  Google Scholar 

  20. Zhu, Y.P., Guo, C., Zheng, Y., and Qiao, S.-Z., Surface and interface engineering of noble-metal-free electrocatalysts for efficient energy conversion processes, Acc. Chem. Res., 2017, vol. 50, no. 4, p. 915.

    Article  CAS  Google Scholar 

  21. Liu, K., Zhong, H., Meng, F., Zhang, X., Yan, J., and Jiang, Q., Recent advances in metal–nitrogen–carbon catalysts for electrochemical water splitting, Mater. Chem. Front., 2017, vol. 1, no. 11, p. 2155.

    Article  CAS  Google Scholar 

  22. Gewirth, A.A., Varnell, J.A., and DiAscro, A.M., Nonprecious metal catalysts for oxygen reduction in heterogeneous aqueous systems, Chem. Rev., 2018, vol. 118, no. 5, p. 2313.

    Article  CAS  Google Scholar 

  23. He, Y., Tan, Q., Lu, L., Sokolowski, J., and Wu, G., Metal–Nitrogen–Carbon catalysts for oxygen reduction in PEM fuel cells: self-template synthesis approach to enhancing catalytic activity and stability, Electrochem. Energy Rev., 2019, vol. 2, no. 2, p. 231.

    Article  CAS  Google Scholar 

  24. Kovtyukhova, N.I., Ollivier, P.J., Martin, B.R., Mallouk, T.E., Chizhik, S.A., Buzaneva, E.V., and Gorchinskiy, A.D., Layer-by-layer assembly of ultrathin composite films from micron-sized graphite oxide sheets and polycations, Chem. Mater., 1999, vol. 11, no. 3, p. 771.

    Article  CAS  Google Scholar 

  25. Pariiska, O.O., Mazur, D.O., Kurys, Ya.I., Koshe-chko, V.G., and Pokhodenko, V.D., Effect of the formation conditions on the activity of Co–N–C electrocatalysts derived from poly-m-phenylenediamine in the reduction of oxygen, Theor. Exp. Chem., 2019, vol. 54, no. 6, p. 386.

    Article  CAS  Google Scholar 

  26. Rosenau, C.P., Jelier, B.J., Gossert, A.D., and Togni, A., Exposing the origins of irreproducibility in fluorine NMR spectroscopy, Angew. Chem. Int. Ed., 2018, vol. 57, p. 1.

    Article  Google Scholar 

  27. Munuera, J.M., Paredes, J.I., Villar-Rodil, S., Ayán-Varela, M., Martínez-Alonso, A., and Tascón, J.M.D., Electrolytic exfoliation of graphite in water with multifunctional electrolytes: en route towards high quality, oxide-free graphene flakes, Nanoscale, 2016, vol. 8, p. 2982.

    Article  CAS  Google Scholar 

  28. Lu, J., Yang, J., Wang, J., Lim, A., Wang, S., and Loh, K.P., One-pot synthesis of fluorescent carbon nanoribbons, nanoparticles, and graphene by the exfoliation of graphite in ionic liquids, ACS Nano, 2009, vol. 3, no. 8, p. 2367.

    Article  CAS  Google Scholar 

  29. Das, A., Chakraboty, B., and Sood, A.K., Raman spectroscopy of graphene on different substrates and influence of defects, Bull. Mater. Sci., 2008, vol. 31, no. 3, p. 579.

    Article  CAS  Google Scholar 

  30. Min, Y., Shen, Z., Zhang, X., and Ma, S., Achieving concentrated graphene dispersions in water/acetone mixtures by the strategy of tailoring Hansen solubility parameters, J. Phys. D: Appl. Phys., 2013, vol. 46, no. 2, p. 025301.

    Article  Google Scholar 

  31. López, V., Sundaram, R.S., Gómez-Navarro, C., Olea, D., Burghard, M., Gómez-Herrero, J., Zamora, F., and Kern, K., Chemical vapor deposition repair of graphene oxide: a route to highly-conductive graphene monolayers, Adv. Mater., 2009, vol. 21, no. 46, p. 4683.

    Article  Google Scholar 

  32. Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., Mastrogiovanni, D., Granozzi, G., Garfunkel, E., and Chhowalla, M., Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films, Adv. Funct. Mater., 2009, vol. 19, no. 16, p. 2577.

    Article  CAS  Google Scholar 

  33. Wang, S., Dou, S., Tao, L., Huo, J., and Dai, L., Etched and doped Co9S8/graphene hybrid for oxygen electrocatalysis, Energy Environ. Sci., 2016, vol. 9, p. 1320.

    Article  Google Scholar 

  34. Zhang, L., Liu, W., Dou, Y., Du., Z., and Shao, M., The role of transition metal and nitrogen in Metal–N–C composites for hydrogen evolution reaction at universal pHs, J. Phys. Chem. C, 2016, vol. 120, no. 51, p. 29047.

    Article  CAS  Google Scholar 

  35. Wang, X., Ke, Y., Pan, H., Ma, K., Xiao, Q., Yin, D., Wu, G., and Swihart, M.T., Cu-deficient plasmonic Cu2–xS nanoplate electrocatalysts for oxygen reduction, ACS Catal., 2015, vol. 5, no. 4, p. 2534.

    Article  CAS  Google Scholar 

  36. Zhang, Q., Mamtani, K., Jain, D., Ozkan, U., and Asthagiri, A., CO poisoning effects on FeNC and CNx ORR catalysts: A combined experimental–computational study, J. Phys. Chem. C, 2016, vol. 120, no. 28, p. 15173.

    Article  CAS  Google Scholar 

  37. Zhang, J., Chen, G., Müllen, K., and Feng, X., Carbon-rich nanomaterials: Fascinating hydrogen and oxygen electrocatalysts, Adv. Mater., 2018, vol. 30, 1800528.

    Article  Google Scholar 

  38. Shinagawa, T., Garcia-Esparza, A.T., and Takanabe, K., Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion, Sci. Rep., 2015, vol. 5, 13801.

    PubMed  PubMed Central  Google Scholar 

Download references

Funding

This study is partly supported by the targeted complex programs of scientific research of the National Academy of Sciences (NAN) of Ukraine “Fundamental Aspects of Renewable Hydrogen Energetics and Fuel Cell Technologies” and “New Functional Substances and Materials for Chemical Industry” and also by the targeted complex program of fundamental research of the NAN of Ukraine “Fundamental Problems of the Development of New Nanomaterials and Nanotechnologies.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. I. Kurys.

Ethics declarations

The authors declare the absence of conflict of interests.

Additional information

Translated by T. Safonova

Published on the basis of materials of the XIX All-Russian Conference “Electrochemistry of Organic Compounds” (EKHOS-2018) (with international participation), Novocherkassk, 2018.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurys, Y.I., Pariiska, O.O., Mazur, D.O. et al. Electrochemical Synthesis of Multilayered Graphene and Its Use in Co–N–C Electrocatalysts of Oxygen Reduction and Hydrogen Evolution. Russ J Electrochem 56, 271–284 (2020). https://doi.org/10.1134/S1023193520040072

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193520040072

Keywords:

Navigation