Skip to main content
Log in

Determination of Paraquat Dichloride from Water Samples Using Differential Pulse Cathodic Stripping Voltammetry

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Paraquat dichloride commonly used as herbicide was determined by differential pulse cathodic stripping voltammetry technique. Experimental parameters, such as pH, accumulation time, accumulation potential and initial potential were optimized. In this analysis, paraquat dichloride exhibited a well-defined tworeduction peaks at −0.35 and −0.90 V in the pH range from 2.0 to 12.0. The 0.04 mol L–1 BR buffer at pH 2.0 was found a suitable medium for electroanalytical determination of the paraquat dichloride. Interfering ions effect was not significant. Linear calibration plots for standard solutions of paraquat dichloride were obtained in the range of 0.25 to 1.75 × 10–6 mol L–1. Detection limit was 3.66 × 10–8 mol L–1. The optimized parameters were effectively applied for the determination of commercial paraquat dichloride and in artificial samples. Artificial samples were prepared by spiking paraquat dichloride into tap water and drinking water dispenser samples. The recovery value was 90.5% in drinking water dispenser samples and 91.7% in tap water samples at the concentration range of 1.00 × 10–6 to 1.75 × 10–6 mol L–1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taylor, M.D., Klaine, S.J., and Carvalho, F.P., Pesticide Residues in Coastal Tropical Ecosystems: Distribution, Fate and Effects, New York: CRC Publ., 2002, p. 576.

    Book  Google Scholar 

  2. Jamaludin, N., Sham, S.M., and Ismail, S.N.S., Health risk assessment of nitrate exposure in well water of residents in intensive agriculture area, Am. J. Appl. Sci., 2013, vol. 10, p. 442.

    Article  CAS  Google Scholar 

  3. Boxall, A.B.A., New and Emerging Water Pollutants Arising from Agriculture, OECD Publ., 2012, p. 49.

    Google Scholar 

  4. Dornellasa, R.M., Franchini, R.A.A., and Aucelio, R.Q., Determination of the fungicide picoxystrobin using anodic stripping voltammetry on a metal film modified glassy carbon electrode, Electrochim. Acta, 2013, vol. 90, p. 202.

    Article  CAS  Google Scholar 

  5. Inam, R., Can, E., and Demir, E., Electrooxidation and determination of methacetin (p-acetanisidide) by square wave voltammetry using multiwalled carbon nanotube electrode, Anal. Methods, 2013, vol. 5, p. 6338.

    Article  CAS  Google Scholar 

  6. Priyantha, N. and Weliwegamage, S., Interaction of thiram with glassy carbon electrode surfaces under applied potentials conditions, Int. J. Electrochem. Sci., 2008, vol. 3, p. 125.

    CAS  Google Scholar 

  7. Sathishkumar, P., Palvannnan, T., Rajesh, R.V., and Boopathy, R., Effect of pesticide exposure in erythrocyte membrane bound acetylcholinesterase, New Biotechnol., 2009, vol. 25, p. 370.

    Article  Google Scholar 

  8. Raghua, P., Reddya, T.M., and Swamy, B.E.K., Development of AChE biosensor for the determination of methyl parathion and monocrotophos in water and fruit samples: a cyclic voltammteric study, J. Electroanal. Chem., 2012, vol. 665, p. 76.

    Article  CAS  Google Scholar 

  9. Ni, Y., Qiu, P., and Kokot, S., Simultaneous determination of three organophosphorus pesticides by differential pulse stripping voltammetry and chemometrics, Anal. Chim. Acta, 2004, vol. 516, p. 7.

    Article  CAS  Google Scholar 

  10. Erdogdu, G. and Titretir, S., Voltammetric determination of mesotrione at hanging mercury drop electrode, J. Anal. Chem., 2007, vol. 62, p. 777.

    Article  CAS  Google Scholar 

  11. Bromilow, R.H., Paraquat and sustainable agriculture, Pest. Manag. Sci., 2004, vol. 60, p. 340.

    Article  CAS  PubMed  Google Scholar 

  12. Halfon, E., Galassi, S., Bruggemann, R., and Provini, A., Selection of priority properties to assess environmental hazard of pesticides, Chemosphere, 1996, vol. 33, p. 1543.

    Article  CAS  Google Scholar 

  13. Fernandez, M., Ibanez, M., Pico, Y., and Manes, J., Spatial and temporal trends of paraquat, diquat, and difenzoquat contamination in water from marsh areas of the Valencian community (Spain), Arch. Environ. Contam. Toxicol., 1998, vol. 35, p. 377.

    Article  CAS  PubMed  Google Scholar 

  14. Sandhu, J.S., Dhiman, A., Mahajan, R., and Sandhu, P., Outcome of paraquat poisoning–a five year study, Indian. J. Nephrol., 2003, vol. 13, p. 64.

    Google Scholar 

  15. Prasad, K., Winnik, B., and Thiruchelvam, M.J., Prolonged toxicokinetics and toxicodynamics of paraquat in mouse brain, Environ. Health. Perspect., 2007, vol. 115, p. 1448.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Winnik, B., Barr, D.B., and Thiruchelvam, M., Quantification of paraquat, MPTP, and MPP+ in brain tissue using microwave assisted solvent extraction (MASE) and high-performance liquid chromatography–mass spectrometry, Anal. Bioanal. Chem., 2009, vol. 395, p. 195.

    CAS  PubMed  Google Scholar 

  17. Ritter, L., Solomon, K., and Sibley, P., Sources, pathways, and relative risks of contaminants in surface water and groundwater: a perspective prepared for the Walkerton inquiry, J. Toxicol. Environ. Health. A, 2002, vol. 65, p. 1.

    Article  CAS  PubMed  Google Scholar 

  18. Jain, A., Verma, K.K., and Townshend, A., Determination of paraquat by flow-injection spectrophotometry, Anal. Chim. Acta, 1993, vol. 284, p. 275.

    Article  CAS  Google Scholar 

  19. Luna, J.R., Bernardo, M.L.D., and Garcia, M.Y., Determination of paraquat in urine samples by flowinjection analysis, Acta. Bio. Quim. Clin. Latinoam., 2008, vol. 43, p. 251.

    Google Scholar 

  20. Ito, M., Hori, Y., and Fujisawa, M., Rapid analysis method for paraquat and diquat in the serum using ionpair high-performance liquid chromatography, Biol. Pharm. Bull., 2005, vol. 28, p. 725.

    Article  CAS  PubMed  Google Scholar 

  21. Almeida, R.M.D. and Yonamine, M., Gas chromatographic–mass spectrometric method for the determination of the herbicides paraquat and diquat in plasma and urine samples, J. Chromatogr. B, 2007, vol. 853, p. 260.

    Article  CAS  Google Scholar 

  22. Niewola, Z., Benner, J.P., and Swaine, H., Determination of paraquat residues in soil by an enzyme linked immunosorbent assay, Analyst, 1986, vol. 111, p. 399.

    Article  CAS  Google Scholar 

  23. El-Harmoudi, H., Achak, M., and Farahi, A., Sensitive determination of paraquat by square wave anodic stripping voltammetry with chitin modified carbon paste electrode, Talanta, 2013, vol. 115, p. 172.

    Article  CAS  PubMed  Google Scholar 

  24. Ye, X., Gu, Y., and Wang, C., Fabrication of the Cu2O/polyvinyl pyrrolidone-graphene modified glassy carbon-rotating disk electrode and its application for sensitive detection of herbicide paraquat, Sens. Actuators B, 2012, vol. 173, p. 530.

    Article  CAS  Google Scholar 

  25. Garcia, L.L.C., Figueiredo, L.C.S.F., and Oliveira, G.G., Square-wave voltammetric determination of paraquat using a glassy carbon electrode modified with multiwalled carbon nanotubes within a dihexadecylhydrogenphosphate (DHP) film, Sens. Actuators B, 2013, vol. 181, p. 306.

    Article  CAS  Google Scholar 

  26. Niu, L.M., Liu, F., and Wang, W., Electrochemical behavior of paraquat on a highly ordered biosensor based on an unmodified DNA-3D gold nanoparticle composite and its application, Electrochim. Acta, 2015, vol. 153, p. 190.

    Article  CAS  Google Scholar 

  27. Farahi, A., Achak, M., and El-Gaini, L., Silver particles-modified carbon paste electrodes for differential pulse voltammetric determination of paraquat in ambient water samples, J. Ass. Arab. Univ. Basic Appl. Sci., 2016, vol. 19, p. 37.

    Google Scholar 

  28. Tyszczuk-Rotko, K., Beczkowska, I., and Nosal-Wiercinska, A., Simple, selective and sensitive voltammetric method for the determination of herbicide (paraquat) using a bare boron-doped diamond electrode, Diam. Relat. Mater., 2014, vol. 50, p. 86.

    Article  CAS  Google Scholar 

  29. Abdelfettah, F., Mounia, A., and Laila, G., Electrochemical determination of paraquat in citric fruit based on electrodeposition of silver particles onto carbon paste electrode, J. Food Drug Anal., 2015, vol. 23, p. 463.

    Article  CAS  Google Scholar 

  30. Cristiane, K., Antonio, M.S., Luiz, J.H., and Marcio, B.F., Carbon paste electrode modified with biochar for sensitive electrochemical determination of paraquat, Electroanalysis, 2016, vol. 28, p. 764.

    Article  CAS  Google Scholar 

  31. Thanalechumi, P., Yusoff, A.R.M., and Yusop, Z., A simple voltammetric determination of metsulfuronmethyl in water samples using differential pulse cathodic stripping voltammetry, J. Pestic. Sci., 2017, vol. 42, no. 2, pp. 39–44. doi doi 10.1584/jpestics.D16-086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdull Rahim Mohd Yusoff.

Additional information

Published in Russian in Elektrokhimiya, 2018, Vol. 54, No. 12, pp. 1102–1110.

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paramalinggam, T., Yusoff, A.R.M., Qureshi, M.S. et al. Determination of Paraquat Dichloride from Water Samples Using Differential Pulse Cathodic Stripping Voltammetry. Russ J Electrochem 54, 1155–1163 (2018). https://doi.org/10.1134/S1023193518140069

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193518140069

Keywords

Navigation