Skip to main content
Log in

Cysteine adsorption on the Au(111) surface and the electron transfer in configuration of a scanning tunneling microscope: A quantum-chemical approach

  • Published:
Russian Journal of Electrochemistry Aims and scope Submit manuscript

Abstract

Adsorption of two forms, molecule and radical, of amino acid L-cysteine (Cys) on the Au12 cluster that simulates the (111) face of single-crystal gold is studied in the framework of the density functional theory. Effects of solvation of adsorbed Cys particles and lateral interaction in a monolayer are analyzed. The simulation predicts a commensurate adsorption energetics of the molecule and radical, with a difference between the “on-top,” “hollow,” and “bridge” positions. An analysis of lateral electrostatic interactions points to the stability of a cluster comprising six Cys particles, which conforms to the size of a fragment observed experimentally. Adsorption calculations are used to build three-dimensional isosurfaces (STM images), where the tungsten needle of the scanning tunneling microscope is simulated by a tungsten atom or by small clusters. The calculated images are sensitive to both the Cys shape and the orientation of adsorbed Cys particles. Calculation results are compared with fresh in situ submolecular-resolution STM data. Simulated images (with commensurate contributions made by sulfur atom and amino group) built for Cys radical adsorbed in the “on-top” position give best conformance to experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Prediction of Protein Structure and the Principles of Protein Conformation, Fasman, G.B., Ed., New York: Plenum, 1989.

    Google Scholar 

  2. Chi, Q., Zhang, J., Nielsen, J.U., Friis, E.P., Chorkendorff, I., Canters, G.W., Andersen, J.E.T., and Ulstrup, J., J. Am. Chem. Soc., 2000, vol. 122, p. 4047.

    Article  CAS  Google Scholar 

  3. Zhang, J., Chi, Q., Kuznetsov, A.M., Hansen, A.G., Wackerbarth, H., Christensen, H.E.M., Andersen, J.E.T., and Ulstrup, J., J. Phys. Chem. B, 2002, vol. 106, p. 1131.

    Article  CAS  Google Scholar 

  4. Chi, Q., Zhang, J., Friis, E.P., Andersen, J.E.T., and Ulstrup, J., Electrochem. Commun., 1999, vol. 1, p. 91.

    Article  CAS  Google Scholar 

  5. Fujita, K., Nakamura, N., Ohno, H., Leigh, B., Niki, K., Gray, H.B., and Richards, J.H., J. Am. Chem. Soc., 2004, vol. 126, p. 13954.

    Article  CAS  Google Scholar 

  6. Avila, A., Gregory, B.W., Niki, K., and Cotton, T.M., J. Phys. Chem. B, 2000, vol. 104, p. 2759.

    Article  CAS  Google Scholar 

  7. Song, S., Clark, R.A., Bowden, E.F., and Tarlov, M.J., J. Phys. Chem., 1993, vol. 97, p. 6564.

    Article  CAS  Google Scholar 

  8. Chi, Q., Zhang, J., Andersen, J.E.T., and Ulstrup, J., J. Phys. Chem. B, 2001, vol. 105, p. 4669.

    Article  CAS  Google Scholar 

  9. Zhang, J., Christensen, H.E.M., Ooi, B.L., and Ulstrup, J., Langmuir, 2004, vol. 20, p. 10200.

    Article  CAS  Google Scholar 

  10. Ralph, T.R., Hitchman, M.L., Millington, J.P., and Walsh, F.C., J. Electroanal. Chem., 1994, vol. 375, p. 1.

    Article  CAS  Google Scholar 

  11. His, A. and Liedberg, B., J. Colloid Interface Sci., 1991, vol. 144, p. 282.

    Article  Google Scholar 

  12. Uvdal, K., Bod, P., and Liedberg, B., J. Colloid Interface Sci., 1992, vol. 149, p. 162.

    Article  CAS  Google Scholar 

  13. Tüdös, A.J., Vandeberg, P.J., and Johnson, D.C., Anal. Chem, 1995, vol. 67, p. 552.

    Article  Google Scholar 

  14. Fawcett, W.R., Fedurco, M., Kovacova, Z., and Borkowska, Z., J. Electroanal. Chem., 1994, vol. 368, p. 275.

    Article  CAS  Google Scholar 

  15. Leggett, G.J., Davies, M.C., Jackson, D.E., and Tendler, S.J.B., J. Phys. Chem., 1993, vol. 97, p. 5348.

    Article  CAS  Google Scholar 

  16. Hager, G. and Brolo, A.G., J. Electroanal. Chem., 2003, vol. 550, p. 291.

    Article  CAS  Google Scholar 

  17. Dodero, G., Michieli, L.D., Cavalleri, O., Rolandi, R., Oliveri, A., and Dacca, ParodiR., Colloids Surf., A, 2000, vol. 175, p. 121.

    Article  CAS  Google Scholar 

  18. Cavalleri, O., Gonella, G., Terreni, S., Vignolo, M., Floreano, L., Morgante, A., Canepa, M., and Rolandi, R., Phys. Chem. Chem. Phys., 2004, vol. 6, p. 4042.

    Article  CAS  Google Scholar 

  19. Shin, T., Kim, K.N., Lee, C.W., Shin, S.K., and Kang, H., J. Phys. Chem. B, 2003, vol. 107, p. 11674.

    Article  CAS  Google Scholar 

  20. Fawcett, W.R., Fedurco, M., Kovacova, Z., and Borkowska, Z., Langmuir, 1994, vol. 10, p. 912.

    Article  CAS  Google Scholar 

  21. Dakkouri, A.S., Kolb, D.M., Edelstein-Shima, R., and Mandler, D., Langmuir, 1996, vol. 12, p. 2849.

    Article  CAS  Google Scholar 

  22. Zhang, J., Chi, Q., Nielsen, J.U., Friis, E.P., Andersen, J.E.T., and Ulstrup, J., Langmuir, 2000, vol. 16, p. 7229.

    Article  CAS  Google Scholar 

  23. Xu, Q., Wan, L., Wang, C., Bai, C., Wang, Z., and Nozawa, T., Langmuir, 2001, vol. 17, p. 6203.

    Article  CAS  Google Scholar 

  24. Kühnle, A., Linderoth, T.R., and Besenbacher, F., J. Am. Chem. Soc., 2003, vol. 125, p. 14680.

    Article  CAS  Google Scholar 

  25. Kühnle, A., Linderoth, T.R., Hammer, B., and Besenbacher, F., Nature, 2002, vol. 415, p. 891.

    Article  Google Scholar 

  26. Gewirth, A.A. and Niece, B.K., Chem. Rev., 1997, vol. 97 P, p. 1129.

    Article  Google Scholar 

  27. Itaya, K., Prog. Surf. Sci., 1998, vol. 58, p. 121.

    Article  CAS  Google Scholar 

  28. Claypool, C.L., Faglioni, F., Goddard, W.A., Gray, H.B., Lewis, N., and Marcus, R.A., J. Phys. Chem. B, 1997, vol. 101, p. 5978.

    Article  CAS  Google Scholar 

  29. Kuznetsov, A.M., Sommer-Larsen, P., and Ulstrup, J., Surf. Sci., 1992, vol. 275, p. 52.

    Article  CAS  Google Scholar 

  30. Kuznetsov, A.M. and Ulstrup, J., J. Phys. Chem. A, 2000, vol. 104, p. 11531.

    Article  CAS  Google Scholar 

  31. Tao, N., J. Phys. Rev. Lett., 1996, vol. 76, p. 4066.

    Article  CAS  Google Scholar 

  32. Albrecht, T., Guckian, A., Ulstrup, J., and Vos, J.G., IEEETrans., Nanotechnol., 2005, vol. 4, p. 430.

    Article  Google Scholar 

  33. Ulman, A., Chem. Rev., 1996, vol. 96, p. 1533.

    Article  CAS  Google Scholar 

  34. Tian, W., Datta, S., Hong, S., Reifenberger, R., Henderson, J.I., and Cubiak, C.P., J. Chem. Phys., 1998, vol. 109, p. 2874.

    Article  CAS  Google Scholar 

  35. Joachim, C. and Ratner, M.A., Nanotechnology, 2004, vol. 15, p. 1065.

    Article  CAS  Google Scholar 

  36. Nitzan, A., Ann. Rev. Phys. Chem., 2001, vol. 52, p. 681.

    Article  CAS  Google Scholar 

  37. Hall, L.E., Reimers, J.R., Hush, N.S., and Silverbrook, K., J. Chem. Phys., 2000, vol. 112, p. 1510.

    Article  CAS  Google Scholar 

  38. Sellers, H., Ulman, A., Shnidman, Y., and Eilers, J.E., J. Am. Chem. Soc., 1993, vol. 115, p. 9389.

    Article  CAS  Google Scholar 

  39. Beardmore, K.M., Krebs, J.D., Bishop, A.R., and Jensen, N., Synth. Met., 1997, vol. 84, p. 317.

    Article  CAS  Google Scholar 

  40. Beardmore, K.M., Krebs, J.D., Grnbech-Jensen, N., and Bishop, A.R., Chem. Phys. Lett., 1998, vol. 286, p. 40.

    Article  CAS  Google Scholar 

  41. Krüger, D., Fuchs, H., Rousseau, R., Marx, D., and Parrinello, M., J. Chem. Phys., 2001, vol. 115, p. 4776.

    Article  CAS  Google Scholar 

  42. Akinaga, Y., Nakajima, T., and Hirao, K., J. Chem. Phys., 2001, vol. 114, p. 8555.

    Article  CAS  Google Scholar 

  43. Hayashi, T., Morikawa, Y., and Nozoye, H., J. Chem. Phys., 2001, vol. 114, p. 7615.

    Article  CAS  Google Scholar 

  44. Morikawa, Y., Hayashi, T., Liew, C.C., and Nozoye, H., Surf. Sci., 2002, vol. 50, p. 46.

    Article  Google Scholar 

  45. Yourdshahyan, Y. and Rappe, A.M., J. Chem. Phys., 2002, vol. 117, p. 825.

    Article  CAS  Google Scholar 

  46. Molina, L.M. and Hammer, B., Chem. Phys. Lett., 2002, vol. 360, p. 264.

    Article  CAS  Google Scholar 

  47. Di Felice, R., Selloni, A., and Molinari, E., J. Phys. Chem. B, 2003, vol. 107, p. 1151.

    Article  CAS  Google Scholar 

  48. Di Felice, R. and Selloni, A., J. Chem. Phys., 2004, vol. 120, p. 4906.

    Article  CAS  Google Scholar 

  49. Tersoff, J. and Hamann, D.R., Phys. Rev. B: Condens. Matter, 1985, vol. 31, p. 805.

    CAS  Google Scholar 

  50. Gaussian 98: Revision A.11.2, Pittsburgh (PA): Gaussian, Inc., 2001.

  51. Perdew, J.P., Burke, K., and Wang, Y., Phys. Rev. B: Condens. Matter, 1996, vol. 54, p. 16533.

    CAS  Google Scholar 

  52. Hay, P.J. and Wadt, W.R., J. Chem. Phys., 1985, vol. 82, p. 270.

    Article  CAS  Google Scholar 

  53. Hehre, W.J., Radom, L., Schleyer, P.V.R., and Pople, J.A., Ab Initio Molecular Orbital Theory, New York: Wiley, 1986.

    Google Scholar 

  54. Nazmutdinov, R.R., Jang, J., Zinkicheva, T.T., Manyurov, I.R., and Ulstrup, J., Langmuir, 2006, vol. 2006, p. 7756.

    Google Scholar 

  55. Krishnan, R., Binkley, J.S., Seeger, R., and Pople, J.A., J. Chem. Phys., 1980, vol. 72, p. 650.

    Article  CAS  Google Scholar 

  56. Brolo, A.G., Germain, P., and Hager, G., J. Phys. Chem. B, 2002, vol. 106, p. 5982.

    Article  CAS  Google Scholar 

  57. Foster, J.P. and Weinhold, F., J. Am. Chem. Soc., 1980, vol. 102, p. 7211.

    Article  CAS  Google Scholar 

  58. Barone, V. and Cossi, M., J. Phys. Chem., 1998, vol. 102, p. 1995.

    CAS  Google Scholar 

  59. Cancs, E., Mennucci, B., and Tomassi, J., J. Chem. Phys., 1997, vol. 107, p. 3032.

    Article  Google Scholar 

  60. Fernández-Ramos, A., Cabaleiro-Lago, E., Hermida-Ramón, J.M., Martínez-Núñez, E., and Peña-Gallego, A., J. Mol. Struct., 2000, vol. 498, p. 191.

    Article  Google Scholar 

  61. Ignaczak, A., Gomes, J.A.N.F., and Romanowski, S., J. Electroanal. Chem., 1998, vol. 450, p. 175.

    Article  CAS  Google Scholar 

  62. Pecina, O. and Schmickler, W., Chem. Phys., 2000, vol. 252, p. 349.

    Article  CAS  Google Scholar 

  63. Kharkats, Yu.I., Nielsen, H., and Ulstrup, J., Electroanal. Chem., 1984, vol. 169, p. 47.

    Article  CAS  Google Scholar 

  64. Breneman, C.M. and Wieberg, K.B., J. Comput. Chem., 1990, vol. 11, p. 361.

    Article  CAS  Google Scholar 

  65. Parsons, R. and Reeves, R.M., J. Electroanal. Chem., 1981, vol. 123, p. 141.

    Article  CAS  Google Scholar 

  66. Lavrich, D.J., Wetterer, S.M., Bernasek, S.L., and Scoles, G., J. Phys. Chem., 1998, vol. 102, p. 3456.

    CAS  Google Scholar 

  67. Schiff, L.I., Quantum Mechanics, New York: McGraw Hill, 1968.

    Google Scholar 

  68. Kuznetsov, A.M. and Ulstrup, J., Chem. Phys., 1991, vol. 157, p. 25.

    Article  CAS  Google Scholar 

  69. Schmickler, W. and Widrig, C., J. Electroanal. Chem., 1992, vol. 336, p. 213.

    Article  CAS  Google Scholar 

  70. Kuznetsov, A.M. and Ulstrup, J., Probe Microscopy, 2001, vol. 2, p. 187.

    CAS  Google Scholar 

  71. Zhang, J., Chi, Q., Albrecht, T., Kuznetsov, A.M., Grubb, M., Hansen, A.G., Wackerbarth, H., Welinder, A.C., and Ulstrup, J., Electrochim. Acta, 2005, vol. 50, p. 3143.

    Article  CAS  Google Scholar 

  72. Tsukada, M., Kobayashi, K., and Isshiki, N., Surf. Sci., 1993, vol. 242, p. 12.

    Article  Google Scholar 

  73. Schmickler, W. and Henderson, D., J. Electroanal. Chem., 1990, vol. 290, p. 283.

    Article  CAS  Google Scholar 

  74. Doyen, G., Koether, E., Barth, J., and Drakova, D., in Scanning Tunneling Microscopy and Related Methods, Behm, R.J., Garcia, V., and Rohrer, H., Eds., Dordrecht: Kluwer Academic, 1989.

    Google Scholar 

  75. Sautet, P., Chem. Rev., 1997, vol. 97, p. 1097.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. R. Nazmutdinov.

Additional information

Original Russian Text © R.R. Nazmutdinov, I.R. Manyurov, T.T. Zinkicheva, J. Jang, J. Ulstrup, 2007, published in Elektrokhimiya, 2007, Vol. 43, No. 3, pp. 346–359.

Based on a plenary lecture delivered at the 8th International Frumkin Symposium “Kinetics of the Electrode Processes,” October 18–22, 2005, Moscow.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nazmutdinov, R.R., Manyurov, I.R., Zinkicheva, T.T. et al. Cysteine adsorption on the Au(111) surface and the electron transfer in configuration of a scanning tunneling microscope: A quantum-chemical approach. Russ J Electrochem 43, 328–341 (2007). https://doi.org/10.1134/S1023193507030111

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1023193507030111

Key words

Navigation