Skip to main content
Log in

Impact of Metalloproteinase 1 Deficiency Induced by Specific Small Hairpin RNA on the Physiological Effects of Tumor Necrosis Factor

  • Medical Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

Matrix metalloproteinases play an important role in the pathogenesis of psoriasis. The aim of this paper was to explore the influence of MMP1 silencing with a specific shRNA on migration and proliferation of epidermal keratinocytes exposed to tumor necrosis factor, as well as changes in the expression of genes involved in their terminal differentiation. Changes in gene expression were analyzed by real-time PCR. The cell proliferation was assessed by comparative analysis of the growth curves. The cell migration was explored by scratch assay. To quantify cell migration, the representative areas of cell cultures were photographed in the equal periods of time and compared to each other. The obtained results demonstrated that an exposure of control cell line to tumor necrosis factor caused changes in the expression of several genes similar to ones that were previously observed in lesional psoriatic skin. Particularly, the expression of MMP9, IVL and KRT16 increased whereas the expression of LOR, KRT1 and-10—decreased. In contrast, MMP1-deficient cells treated with tumor necrosis factor exhibited higher levels of LOR, KRT1 and -10, as well as lower levels KRT16 and -17 compared to control cells treated with the same cytokines. Moreover, MMP1-deficient cells exhibited a lower level of CCNА2 and higher level of CCND1. In this respect, knocking MMP1 down resulted in a lower cell proliferation and migration rates of TNF-treated epidermal keratinocytes. In conclusion, this study demonstrated that MMP1 silencing with specific shRNA can be beneficial for psoriasis. We found that knocking MMP1 down has an antiproliferative effect on epidermal keratinocytes and partially normalizes the expression of cyclins CCNA2, and -D1, as well as the genes involved in the terminal differentiation of this kind of cells (LOR, KRT1, -10, -16 and -17).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Greb, J.E., Goldminz, A.M., Elder, J.T., et al., Psoriasis, Nat. Rev. Dis. Primers., 2016, vol. 2, no. 16082. doi 10.1038/nrdp.2016.82

    Google Scholar 

  2. Michalek, I.M., Loring, B., and John, S.M., A systematic review of worldwide epidemiology of psoriasis, J. Eur. Acad. Dermatol. Venerol., 2017, vol. 31, no. 2, pp. 205–212. doi 10.1111/jdv.13854

    Article  CAS  Google Scholar 

  3. Khamaganova, I.V., Almazova, A.A., Lebedeva, G.A., and Ermachenko, A.V., Psoriasis epidemiology issues, Klinicheskaya Dermatol. Venerol., 2015, no. 1, pp. 12–16. doi 10.17116/klinderma2015112-16

    Article  Google Scholar 

  4. Soboleva, A.G., Mezentsev, A., Zolotorenko, A., et al., Three-dimensional skin models of psoriasis, Cells Tissues Organs, 2014, vol. 199, nos. 5–6, pp. 301–310. doi 10.1159/000369925

    Article  PubMed  CAS  Google Scholar 

  5. Cope, A., Le Friec, G., Cardone, J., et al., The Th1 life cycle: molecular control of IFN-γ to IL-10 switching, Trends Immunol., 2011, vol. 32, no. 6, pp. 278–286. doi 10.1016/j.it.2011.03.010

    Article  PubMed  CAS  Google Scholar 

  6. Di Meglio, P., Villanova, F., and Nestle, F.O., Psoriasis, Cold Spring Harb. Perspect. Med., 2014, vol. 4, no. 8. a015354. doi 10.1101/cshperspect.a015354

    Google Scholar 

  7. Wcisło-Dziadecka, D., Zbiciak-Nylec, M., Brzezińska-Wcisło, L., and Mazurek, U., TNF-α in a molecularly targeted therapy of psoriasis and psoriatic arthritis, Postgrad. Med. J., 2016, vol. 92, no. 1085, pp. 172–178. doi 10.1136/postgradmedj-2015-133419

    Article  PubMed  CAS  Google Scholar 

  8. Kimball, A.B., Bensimon, A.G., Guerin, A., et al., Efficacy and safety of adalimumab among patients with moderate to severe psoriasis with co-morbidities: subanalysis of results from a randomized, double-blind, placebo-controlled, phase III trial, Am. J. Clin. Dermatol., 2011, vol. 12, no. 1, pp. 51–62. doi 10.2165/11530640-000000000-00000

    Article  PubMed  Google Scholar 

  9. Paller, A.S., Siegfried, E.C., Langley, R.G., et al., Etanercept treatment for children and adolescents with plaque psoriasis, N. Engl. J. Med., 2008, vol. 358, no. 3, pp. 241–251. doi 10.1056/NEJMoa066886

    Article  PubMed  CAS  Google Scholar 

  10. Reich, K., Nestle, F.O., Papp, K., et al., EXPRESS study investigators: infliximab induction and maintenance therapy for moderate-to-severe psoriasis: a phase III, multicentre, double-blind trial, Lancet, 2005, vol. 366, no. 9494, pp. 1367–1374. doi 10.1016/S0140-6736(05)67566-6

    Article  PubMed  CAS  Google Scholar 

  11. Menter, A., Gottlieb, A., Feldman, S.R., et al., Guidelines of care for the management of psoriasis and psoriatic arthritis: section 1. Overview of psoriasis and guidelines of care for the treatment of psoriasis with biologics, J. Am. Acad. Dermatol., 2008, vol. 58, no. 5, pp. 826–850. doi 10.1016/j.jaad.2008.02.039

    Article  PubMed  Google Scholar 

  12. Cline, A., Hill, D., Lewallen, R., and Feldman, S.R., Current status and future prospects for biologic treatments of psoriasis, Expert Rev. Clin. Immunol., 2016, vol. 12, no. 12, pp. 1273–1287. doi 10.1080/1744666X.2016.1202115

    Article  PubMed  CAS  Google Scholar 

  13. Starodubtseva, N.L., Sobolev, V.V., Soboleva, A.G., et al., Expression of genes for metalloproteinases (MMP-1, MMP-2, MMP-9, and MMP-12) associated with psoriasis, Russ. J. Genet., 2011, vol. 47, no. 9, pp. 1117–1123.

    Article  CAS  Google Scholar 

  14. Mogulevtseva, J.A. and Mezentsev, A.V., Optimization of lentiviral transduction in the culture of immortalized epidermal keratinocytes, Progress Modern Sci.: Theor. Pract. Aspects, 2017, no. 13, pp. 123–134.

    Google Scholar 

  15. Chomczynski, P. and Mackey, K., Modification of the TRI reagent procedure for isolation of RNA from polysaccharide and proteoglycan-rich sources, BioTechniques, 1995, vol. 19, no. 6, pp. 942–945.

    PubMed  CAS  Google Scholar 

  16. Ranta, V., Orpana, A., Carpén, O., et al., Human vascular endothelial cells produce tumor necrosis factoralpha in response to proinflammatory cytokine stimulation, Crit. Care Med., 1999, vol. 27, no. 10, pp. 2184–2187.

    Article  PubMed  CAS  Google Scholar 

  17. Köck, A., Schwarz, T., Kirnbauer, R., et al., Human keratinocytes are a source for tumor necrosis factor alpha: evidence for synthesis and release upon stimulation with endotoxin or ultraviolet light, J. Exp. Med., 1990, vol. 172, no. 6, pp. 1609–1614.

    Article  PubMed  Google Scholar 

  18. Bashir, M.M., Sharma, M.R., and Werth, V.P., TNF-α production in the skin, Arch. Dermatol. Res., 2009, vol. 301, no. 1, pp. 87–91. doi 10.1007/s00403-008-0893-7

    Article  PubMed  CAS  Google Scholar 

  19. Gatzka, M., Skin under TNF influence: how regulatory T cells work against macrophages in psoriasis, J. Pathol., 2017, vol. 241, no. 1, pp. 3–5. doi 10.1002/path.4820

    Article  PubMed  CAS  Google Scholar 

  20. Arango Duque, G. and Descoteaux, A., Macrophage cytokines: involvement in immunity and infectious diseases, Front. Immunol., 2014, vol. 5, no. 491. doi 10.3389/fimmu.2014.00491

    Google Scholar 

  21. Janes, K.A., Gaudet, S., Albeck, J.G., et al., The response of human epithelial cells to TNF involves an inducible autocrine cascade, Cell, 2006, vol. 124, no. 6, pp. 1225–1239. doi 10.1016/j.cell.2006. 01.041

    Article  PubMed  CAS  Google Scholar 

  22. Osawa, Y., Nagaki, M., Banno, Y., et al., Tumor necrosis factor alpha-induced interleukin-8 production via NF-κB and phosphatidylinositol 3-kinase/Akt pathways inhibits cell apoptosis in human hepatocytes, Infect. Immun., 2002, vol. 70, no. 11, pp. 6294–6301.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Salamone, G., Giordano, M., Trevani, A.S., et al., Promotion of neutrophil apoptosis by TNF-α, J. Immunol., 2001, vol. 166, no. 5, pp. 3476–3483.

    Article  PubMed  CAS  Google Scholar 

  24. Jin, L. and Wang, G., Keratin 17: a critical player in the pathogenesis of psoriasis, Med. Res. Rev., 2014, vol. 34, no. 2, pp. 438–454. doi 10.1002/med.21291

    Article  PubMed  CAS  Google Scholar 

  25. Pagano, M., Pepperkok, R., Verde, F., et al., Cyclin A is required at two points in the human cell cycle, EMBO J., 1992, vol. 11, no. 3, pp. 961–971.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Matsushime, H., Ewen, M.E., Strom, D.K., et al., Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins, Cell, 1992, vol. 71, no. 2, pp. 323–334.

    Article  PubMed  CAS  Google Scholar 

  27. Prasad, C.P, Gupta, S.D., Rath, G., and Ralhan, R., Wnt signaling pathway in invasive ductal carcinoma of the breast: relationship between beta-catenin, dishevelled and cyclin D1 expression, Oncology, 2007, vol. 73, nos. 1–2, pp. 112–117. doi 10.1159/000120999

    Article  PubMed  CAS  Google Scholar 

  28. Manczinger, M. and Kemény, L., Novel factors in the pathogenesis of psoriasis and potential drug candidates are found with systems biology approach, PLoS One, 2013, vol. 8, no. 11. e80751. doi 10.1371/journal. pone.0080751

    Google Scholar 

  29. Scott, K.A., Arnott, C.H., Robinson, S.C., et al., TNF-α regulates epithelial expression of MMP-9 and integrin αvβ6 during tumour promotion: a role for TNF-α in keratinocyte migration?, Oncogene, 2004, vol. 23, no. 41, pp. 6954–6966. doi 10.1038/sj.onc.1207915

    Article  PubMed  CAS  Google Scholar 

  30. Jiang, X., Teng, M., Guo, X., et al., Switch from αvβ5 to αvβ6 integrin is required for CD9-regulated keratinocyte migration and MMP-9 activation, FEBS Lett., 2014, vol. 588, no. 21, pp. 4044–4052. doi 10.1016/j.febslet.2014.09.027

    Article  PubMed  CAS  Google Scholar 

  31. Ashmarin, I.P., Karazeeva, E.P., Lyapina, L.A., and Samonina, G.E., The simplest proline-containing peptides PG, GP, PGP, and GPGG: regulatory activity and possible sources of biosynthesis, Biochemistry (Moscow), 1998, vol. 63, no. 2, pp. 119–124.

    CAS  Google Scholar 

  32. Wells, J.M., Gaggar, A., and Blalock, J.E., MMP generated matrikines, Matrix Biol., 2015, nos. 44–46, pp. 122–129. doi 10.1016/j.matbio.2015.01.016

    Google Scholar 

  33. Boire, A., Covic, L., Agarwal, A., et al., PAR1 is a matrix metalloprotease-1 receptor that promotes invasion and tumorigenesis of breast cancer cells, Cell, 2005, vol. 120, no. 3, pp. 303–313. doi 10.1016/j.cell.2004.12.018

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Mezentsev.

Additional information

Published in Russian in Genetika, 2018, Vol. 54, No. 8, pp. 948–955.

The article was translated by the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mogulevtseva, J.A., Mezentsev, A.V. & Bruskin, S.A. Impact of Metalloproteinase 1 Deficiency Induced by Specific Small Hairpin RNA on the Physiological Effects of Tumor Necrosis Factor. Russ J Genet 54, 960–966 (2018). https://doi.org/10.1134/S1022795418080094

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795418080094

Keywords

Navigation