Skip to main content
Log in

Analysis of heteroplasmy in the major noncoding region of mitochondrial DNA in the blood and atherosclerotic plaques of carotid arteries

  • Short Communications
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

For identification of somatic mitochondrial DNA (mtDNA) mutations, the mtDNA major noncoding region (D-loop) sequence in blood samples and carotid atherosclerosis plaques from patients with atherosclerosis was analyzed. Five point heteroplasmic positions were observed in 4 of 23 individuals (17%). Only in two cases could heteroplasmy have resulted from somatic mutation, whereas three heteroplasmic positions were found in both vascular tissue and blood. In addition, length heteroplasmy in a polycytosine stretches was registered at nucleotide positions 303–315 in 16 individuals, and also in the 16184–16193 region in four patients. The results suggest that somatic mtDNA mutations can occur during atherosclerosis, but some heteroplasmic mutations may appear in all tissues, possibly being inherited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Libby, P., Ridker, P.M., and Hansson, G.K., Progress and challenges in translating the biology of atherosclerosis, Nature, 2011, vol. 473, pp. 317–325. doi 10.1038/nature10146

    Article  CAS  PubMed  Google Scholar 

  2. Bogliolo, M., Izzotti, A., De Flora, S., et al., Detection of the ‘4977 bp’ mitochondrial DNA deletion in human atherosclerotic lesions, Mutagenesis, 1999, vol. 14, pp. 77–82.

    Article  CAS  PubMed  Google Scholar 

  3. Ballinger, S.W., Patterson, C., Knight-Lozano, C.A., et al., Mitochondrial integrity and function in atherogenesis, Circulation, 2002, vol. 106, pp. 544–549.

    Article  CAS  PubMed  Google Scholar 

  4. Botto, N., Berti, S., Manfredi, S., et al., Detection of mtDNA with 4977 deletion in blood cells and atherosclerotic lesions of patients with coronary artery disease, Mutat. Res., 2005, vol. 570, pp. 81–88.

    Article  CAS  PubMed  Google Scholar 

  5. Yu, E., Calvert, P.A., Mercer, J.R., et al., Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans, Circulation, 2013, vol. 128, pp. 702–712. doi 10.1161/CIRCULATIONAHA.113.002271

    Article  CAS  PubMed  Google Scholar 

  6. Sobenin, I.A., Zhelankin, A.V., Sinyov, V.V., et al., Mitochondrial aging: focus on mitochondrial DNA damage in atherosclerosis—a mini-review, Gerontology, 2015, vol. 61, pp. 343–349. doi 10.1159/000368923

    Article  CAS  PubMed  Google Scholar 

  7. Wallace, D.C. and Chalkia, D., Mitochondrial DNA genetics and the heteroplasmy conundrum in evolution and disease, Cold Spring Harb. Perspect. Biol., 2013, vol. 3. a021220. doi 10.1101/cshperspecta021220

    Article  Google Scholar 

  8. Andrews, R.M., Kubacka, I., and Chinnery, P.F., et al., Reanalysis and revision of the Cambridge: reference sequence for human mitochondrial DNA, Nat. Genet., 1999, vol. 23, p. 147.

    Article  CAS  PubMed  Google Scholar 

  9. Kloss-Brandstaetter, A., Pacher, D., Schoenherr, S., et al., HaploGrep: a fast and reliable algorithm for automatic classification of mitochondrial DNA haplogroups, Hum. Mutat., 2011, vol. 32, pp. 25–32. doi 10.1002/humu.21382

    Article  CAS  Google Scholar 

  10. van Oven, M. and Kayser, M., Updated comprehensive phylogenetic tree of global human mitochondrial DNA variation, Hum. Mutat., 2009, vol. 30, no. 2, pp. E386–E394. doi 10.1002/humu.20921

    Article  PubMed  Google Scholar 

  11. Morozova, I.Yu., Naumova, O.Yu., Rychkov, S.Yu., and Zhukova, O.V., Mitochondrial DNA polymorphism in Russian population form five oblasts of the European part of Russia, Russ. J. Genet., 2005, vol. 41, no. 9, pp. 1040–1045.

    Article  CAS  Google Scholar 

  12. Balanovskii, O.P., Pshenichnov, A.S., Frolova, S.A., et al., The main features of the mitochondrial gene pool of the Eastern Slavs, Med. Genet., 2010, vol. 9, no. 1, pp. 29–37.

    Google Scholar 

  13. Golubenko, M.V., Salakhov, R.R., Makeeva, O.A., et al., Association of mitochondrial DNA polymorphism with myocardial infarction and prognostic signs for atherosclerosis, Mol. Biol. (Moscow), 2015, vol. 49, no. 6, pp. 867–874. doi 10.7868/S0026898415050080

    Article  CAS  Google Scholar 

  14. Naue, J., Horer, S., Sanger, T., et al., Evidence for frequent and tissue-specific sequence heteroplasmy in human mitochondrial DNA, Mitochondrion, 2015, vol. 20, pp. 82–94. doi 10.1016/jmito.2014.12.002

    Article  CAS  PubMed  Google Scholar 

  15. Li, M., Schroeder, R., Ni, S., et al., Extensive tissuerelated and allele-related mtDNA heteroplasmy suggests positive selection for somatic mutations, Proc. Natl. Acad. Sci. U.S.A., 2015, vol. 112, pp. 2491–2496. doi 10.1073/pnas.1419651112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Krjutskov, K., Koltsina, M., Grand, K., et al., Tissuespecific mitochondrial heteroplasmy at position 16,093 within the same individual, Curr. Genet., 2014, vol. 60, pp. 11–16. doi 10.1007/s00294-013-0398-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Irwin, J.A., Saunier, J.L., Niederstatter, H., et al., Investigation of heteroplasmy in the human mitochondrial DNA control region: a synthesis of observations from more than 5000 global population samples, J. Mol. Evol., 2009, vol. 68, pp. 516–527. doi 10.1007/s00239009-9227-4

    Article  CAS  PubMed  Google Scholar 

  18. Ramos, A., Santos, C., Mateiu, L., et al., Frequency and pattern of heteroplasmy in the complete human mitochondrial genome, PLoS One, 2013, vol. 8. doi 10.1371/journalpone.007463

  19. Rotskaya, U.N., Rogozin, I.B., Vasyunina, E.A., et al., Analysis of mitochondrial DNA somatic mutations in OXYS and Wistar strain rats, Biochemistry (Moscow), 2009, vol. 74, no. 4, pp. 430–437.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Golubenko.

Additional information

Original Russian Text © M.V. Golubenko, M.S. Nazarenko, A.V. Frolov, A.A. Sleptsov, A.V. Markov, M.E. Glushkova, O.L. Barbarash, V.P. Puzyrev, 2016, published in Genetika, 2016, Vol. 52, No. 4, pp. 497–502.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubenko, M.V., Nazarenko, M.S., Frolov, A.V. et al. Analysis of heteroplasmy in the major noncoding region of mitochondrial DNA in the blood and atherosclerotic plaques of carotid arteries. Russ J Genet 52, 436–440 (2016). https://doi.org/10.1134/S1022795416040049

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795416040049

Keywords

Navigation