Skip to main content
Log in

Meristematic characteristics of tumors initiated by Agrobacterium tumefaciens in pea plants

  • Plant Genetics
  • Published:
Russian Journal of Genetics Aims and scope Submit manuscript

Abstract

It is known that two key groups of plant hormones—auxins and cytokinins—play an important role in plant tumor development. The formation of Agrobacterium-induced tumors results from the horizontal transfer of bacterial oncogenes involved in the biosynthesis of these hormones in the plant genome. The role of transcriptional factors in plant tumor development is poorly investigated. It can be assumed that tumor development associated with abnormal cell proliferation can be controlled by the same set of transcription factors that control normal cell proliferation and, in particular, transcription factors that regulate meristem activity. In the present study, we analyzed the histological organization and distribution of proliferating cells in tumors induced by Agrobacterium tumefaciens on pea hypocotyls. In addition, the expression of a set of meristem-specific genes with Agrobacterium tumefaciens-induced tumor development was analyzed. In general, our results indicate that meristematic structures are present in A. tumefaciens-induced tumors and that the development of such tumors is associated with increased expression of a key gene regulating the root apical meristem—the WOX5 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chilton, M.D., Drummond, M.H., Merio, D.J., et al., Stable incorporation of plasmid DNA into higher plant cells: the molecular basis of crown gall tumorigenesis, Cell, 1977, vol. 11, pp. 263–271.

    Article  CAS  PubMed  Google Scholar 

  2. Dodueva, I.E. and Lutova, L.A., Opukholi vysshikh rastenii (Tumors of Higher Plants), Lambert, 2011.

    Google Scholar 

  3. Ahuja, M.R., Genetic tumors in Nicotiana and other plants, Q. Rev. Biol., 1998, vol. 73, pp. 439–462.

    Article  Google Scholar 

  4. Garfinkel, D.J., Simpson, R.B., Ream, L.W., et al., Genetic analysis of crown gall: fine structure map of the T-DNA by site-directed mutagenesis, Cell, 1981, vol. 27, pp. 143–153.

    Article  CAS  PubMed  Google Scholar 

  5. Morris, R.O., Gene specifying auxin and cytokinin biosynthesis in phytopathogens, Annu. Rev. Plant Physiol., 1986, vol. 37, pp. 509–538.

    Article  CAS  Google Scholar 

  6. Veselov, D., Langhans, M., Hartung, W., et al., Development of Agrobacterium tumefaciens C58-induced plant tumors and impact on host shoots are controlled by a cascade of jasmonic acid, auxin, cytokinin, ethylene and abscisic acid, Planta, 2003, vol. 216, pp. 512–522.

    CAS  PubMed  Google Scholar 

  7. Schwalm, K., Aloni, R., Langhans, M., et al., Flavonoid-related regulation of auxin accumulation in Agrobacterium tumefaciens-induced plant tumors, Planta, 2003, vol. 218, pp. 163–178.

    Article  CAS  PubMed  Google Scholar 

  8. Helfer, A., Clément, B., Michler, P., and Otten, L., The Agrobacterium oncogene AB-6b causes a graft-transmissible enation syndrome in tobacco, Plant Mol. Biol., 2003, vol. 52, pp. 483–493.

    Article  CAS  PubMed  Google Scholar 

  9. Terakura, S., Ueno, Y., Tagami, H., et al., An oncoprotein from the plant pathogen Agrobacterium has histone chaperone-like activity, Plant Cell, 2007, vol. 19, pp. 2855–2865.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kupila, S., Crown gall as an anatomical and cytological problem: a review, Cancer Res., 1963, vol. 23, pp. 497–509.

    CAS  PubMed  Google Scholar 

  11. Aloni, R., Pradel, K.S., and Ullrich, C.I., The threedimensional structure of vascular tissues in Agrobacterium tumefaciens-induced crown galls and in the host stems of Ricinus communis, Planta, 1995, vol. 196, pp. 597–605.

    Article  CAS  Google Scholar 

  12. Sarkar, A.K., Luijten, M., Miyashima, S., et al., Conserved factors regulate signalling in Arabidopsis thaliana shoot and root stem cell organizers, Nature, 2007, vol. 446, pp. 811–814.

    Article  CAS  PubMed  Google Scholar 

  13. Hamant, O. and Pautot, V., Plant development: a TALE story, C. R. Biol., 2010, vol. 333, pp. 371–381.

    Article  CAS  PubMed  Google Scholar 

  14. Tvorogova, V.E., Osipova, M.A., Dodueva, I.E., and Lutova, L.A., Interaction of transcription factors and phytohormones in the regulation of plant meristems, Ekol. Genet., 2012, vol. 10, no. 4, pp. 28–40.

    CAS  Google Scholar 

  15. Buechel, S., Leibfried, A., To, J.P., et al., Role of A-type ARABIDOPSIS RESPONSE REGULATORS in meristem maintenance and regeneration, Eur. J. Cell Biol., 2010, vol. 89, pp. 279–284.

    Article  CAS  PubMed  Google Scholar 

  16. Atta, R., Laurens, L., Boucheron-Dubuisson, E., et al., Pluripotency of Arabidopsis xylem pericycle underlies shoot regeneration from root and hypocotyl explants grown in vitro, Plant J., 2009, vol. 57, pp. 626–664.

    Article  CAS  PubMed  Google Scholar 

  17. Rupp, H.-M., Frank, M., Werner, T., et al., Increased steady state mRNA levels of the STM and KNAT1 homeobox genes in cytokinin overproducing Arabidopsis thaliana indicate a role for cytokinins in the shoot apical meristem, Plant J., 1999, vol. 18, pp. 557–563.

    Article  CAS  PubMed  Google Scholar 

  18. Teo, W.L., Kumar, P., Goh, C.J., and Swarup, S., The expression of Brostm, a KNOTTED1-like gene, marks the cell type and timing of in vitro shoot induction in Brassica oleracea, Plant. Mol. Biol., 2001, vol. 46, pp. 567–580.

    Article  CAS  PubMed  Google Scholar 

  19. Souček, P., Klíma, P., Reková, A., and Brzobohaty, B., Involvement of hormones and KNOXI genes in early Arabidopsis seedling development, J. Exp. Bot., 2007, vol. 58, pp. 3797–3810.

    Article  PubMed  Google Scholar 

  20. Leibfried, A., To, J.P.C., Busch, W. et al., WUSCHEL controls meristem function by direct regulation of cytokinin-inducible response regulators, Nature, 2005, vol. 438, pp. 1172–1175.

    Article  CAS  PubMed  Google Scholar 

  21. Jasinski, S., Piazza, P., Craft, J., et al., KNOX action in Arabidopsis is mediated by coordinate regulation of cytokinin and gibberellin activities, Curr. Biol., 2005, vol. 15, pp. 1560–1565.

    Article  CAS  PubMed  Google Scholar 

  22. Yanai, O., Shan, E., Dolezal, K., et al., Arabidopsis KNOXI proteins activate cytokinin biosynthesis, Curr. Biol., 2005, vol. 15, pp. 1566–1571.

    Article  CAS  PubMed  Google Scholar 

  23. Kamiya, N., Nagasaki, H., Morikami, A., et al., Isolation and characterization of a rice WUSCHEL-type homeobox gene that is specifically expressed in the central cells of a quiescent center in the root apical meristem, Plant J., 2003, vol. 35, pp. 429–441.

    Article  CAS  PubMed  Google Scholar 

  24. Haecker, A., Gross-Hardt, R., Geiges, B., et al., Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana, Development, 2004, vol. 131, pp. 657–668.

    Article  CAS  PubMed  Google Scholar 

  25. Chen, S.-K., Kurdyukov, S., Kereszt, A., et al., The association of homeobox gene expression with stem cell formation and morphogenesis in cultured Medicago truncatula, Planta, 2009, vol. 230, no. 4, pp. 827–840.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Osipova, M.A., Mortier, V., Demchenko, K.N., et al., Wuschel-related homeobox5 gene expression and interaction of CLE peptides with components of the systemic control add two pieces to the puzzle of autoregulation of nodulation, Plant Physiol., 2012, vol. 158, pp. 1329–1341.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Tian, H., Wabnik, K., Niu, T., et al., WOX5-IAA17 feedback circuit-mediated cellular auxin response is crucial for the patterning of root stem cell niches in Arabidopsis, Mol. Plant, 2014, vol. 7, pp. 277–289.

    Article  CAS  PubMed  Google Scholar 

  28. Sabatini, S., Heidstra, R., Wildwater, M., and Scheres, B., SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem, Genes Dev., 2003, vol. 17, pp. 354–358.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Aida, M., Beis, D., Heidstra, R., et al., The PLETH-ORA genes mediate patterning of the Arabidopsis root stem cell niche, Cell, 2004, vol. 119, pp. 109–120.

    Article  CAS  PubMed  Google Scholar 

  30. Galinha, C., Hofhuis, H., Luijten, M., et al., PLETH-ORA proteins as dose-dependent master regulators of Arabidopsis root development, Nature, 2007, vol. 449, pp. 1053–1057.

    Article  CAS  PubMed  Google Scholar 

  31. Blilou, I., Xu, J. Wildwater, M., et al., The PIN auxin efflux facilitator network controls growth and patterning in Arabidopsis roots, Nature, 2005, vol. 433, pp. 39–44.

    Article  CAS  PubMed  Google Scholar 

  32. Fahraeus, G., The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique, J. Gen. Microbiol., 1957, vol. 16, pp. 374–381.

    Article  CAS  PubMed  Google Scholar 

  33. Thompson, J.D., Higgins, D.G., and Gibson, T.J., CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Res., 1994, vol. 22, pp. 4673–4680.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Dolgikh, E.A., Leppyanen, I.V., Osipova, M.A., et al., Genetic dissection of Rhizobium-induced infection and nodule organogenesis in pea based on ENOD12A and ENOD5 expression analysis, Plant Biol. (Berlin, Germany), 2011, vol. 13, pp. 285–296.

    Article  CAS  Google Scholar 

  35. Osipova, M.A., Dolgikh, E.A., and Lutova, L.A., Peculiarities of meristem-specific WOX5 gene expression during nodule organogenesis in legumes, Russ. J. Dev. Biol., 2011, vol. 42, pp. 226–237.

    Article  CAS  Google Scholar 

  36. Livak, K.J. and Schmittgen, T.D., Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method, Methods, 2001, vol. 25, pp. 402–408.

    Article  CAS  PubMed  Google Scholar 

  37. Di Giacomo, E., Sestili, F., Iannelli, M.A., et al., Characterization of KNOX genes in Medicago truncatula, Plant Mol. Biol., 2008, vol. 67, pp. 135–150.

    Article  PubMed  Google Scholar 

  38. Zhao, S., Jiang, Q.T., Ma, J., et al., Characterization and expression analysis of WOX5 genes from wheat and its relatives, Gene, 2014, vol. 537, pp. 63–69.

    Article  CAS  PubMed  Google Scholar 

  39. Chu, H., Liang, W., Li, J., et al., A CLE-WOX signalling module regulates root meristem maintenance and vascular tissue development in rice, J. Exp. Bot., 2013, vol. 64, pp. 5359–5369.

    Article  CAS  PubMed  Google Scholar 

  40. Imin, N., Nizamidin, M., Wu, T., and Rolfe, B.G., Factors involved in root formation in Medicago truncatula, J. Exp. Bot., 2007, vol. 58, pp. 439–451.

    Article  CAS  PubMed  Google Scholar 

  41. Nardmann, J., Reisewitz, P., and Werr, W., Discrete shoot and root stem cell-promoting WUS/WOX5 functions are an evolutionary innovation of angiosperms, Mol. Biol. Evol., 2009, vol. 26, pp. 1745–1755.

    Article  CAS  PubMed  Google Scholar 

  42. Sugimoto, K., Jiao, Y., and Meyerowitz, E.M., Arabidopsis regeneration from multiple tissues occurs via a root developmental pathway, Dev. Cell, 2010, vol. 18, pp. 463–471.

    Article  CAS  PubMed  Google Scholar 

  43. He, C., Chen, X., Huang, H., and Xu, L., Reprogramming of H3K27me3 is critical for acquisition of pluripotency from cultured Arabidopsis tissues, PLoS Genet., 2012, vol. 8. e1002911

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  44. Chatfield, S.P., Capron, R., and Severino, A., Incipient stem cell niche conversion in tissue culture: using a systems approach to probe early events in WUSCHEL-dependent conversion of lateral root primordia into shoot meristems, Plant J., 2013, vol. 73, pp. 798–813.

    Article  CAS  PubMed  Google Scholar 

  45. Monk, M. and Holding, C., Human embryonic genes re-expressed in cancer cells, Oncogene, 2001, vol. 20, pp. 8085–8091.

    Article  CAS  PubMed  Google Scholar 

  46. Ben-Porath, I., Thomson, M.W., Carey, V.J., et al., An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors, Nat. Genet., 2008, vol. 40, pp. 499–507.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Vecchio, L., Seke Etet, P.F., and Kipanyula, M.J., Importance of epigenetic changes in cancer etiology, pathogenesis, clinical profiling, and treatment: what can be learned from hematologic malignancies?, Biochim. Biophys. Acta, 2013, vol. 1836, pp. 90–104.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Lebedeva (Osipova).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vinogradova, A.P., Lebedeva (Osipova), M.A. & Lutova, L.A. Meristematic characteristics of tumors initiated by Agrobacterium tumefaciens in pea plants. Russ J Genet 51, 46–54 (2015). https://doi.org/10.1134/S1022795415010123

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1022795415010123

Keywords

Navigation