Skip to main content
Log in

Vernalization and Photoperiods Mediated IAA and ABA Synthesis Genes Expression in Beta vulgaris

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Biennial plants perceived seasonal stimuli through the photoperiods and vernalization pathways respectively to optimize developmental time. Photoperiods combining with vernalization modulate hormone homeostasis to promote plant normally growth. IAA and ABA play important roles in plant development. Although a series of IAA and ABA genes and their regulation mechanisms have been investigated and characterized extensively in model plants, these underlined mechanisms in Beta vulgaris L. especially under abiotic stress were not entirely clear. This study aimed at exploring IAA and ABA biosynthetic pathway genes and investigating their expression patterns and quantitating analysis hormone by UPLC-MS/MS (ultra performance liquid chromatography-tandem mass spectrometry) in order to demonstrate the molecular mechanism of phytohormone in B. vulgaris. As the results showed BvNIT4 and BvIAA8 contributed to IAA accumulation under nonvernalization condition. Endogenous ABA accumulation in leaves was contributed coordinately by the expression of BvABA2 and BvNCED1 genes both in the vernalized and nonvernalized samples under long day conditions. Vernalization and photoperiods indeed disturb phytohormone genes expression patterns, which data were consistent with the previous studies. New insight was provided to further clarify the molecular mechanism of endogenous hormone in B. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

BLAST:

Basic Local Alignment Search Tool

LD:

long day

SD:

short day

NCED:

9-cis-epoxycarotenoid dioxygenase

UPLC-MS/MS:

ultra performance liquid chromatography-tandem mass spectrometry

W:

weeks

References

  1. Nemhauser, J.L., Dawning of a new era: photomorphogenesis as an integrated molecular network, Curr. Opin. Plant Biol., 2008, vol. 11, pp. 4–8.

    Article  PubMed  CAS  Google Scholar 

  2. Cheng, Y., Dai, X., and Zhao, Y., Auxin biosynthesis by the YUCCA flavin monooxygenases controls the formation of floral organs and vascular tissues in Arabidopsis, Genes Dev., 2006, vol. 20, pp. 1790–1799.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Cheng, Y., Dai, X., and Zhao, Y., Auxin synthesized by the YUCCA flavin monooxygenases is essential for embryogenesis and leaf formation in Arabidopsis, Plant Cell, 2007, vol. 19, pp. 2430–2439.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Stepanova, A.N., Robertson-Hoyt, J., Yun, J., and Benavente, L., TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development, Cell, 2008, vol. 133, pp. 177–191.

    Article  PubMed  CAS  Google Scholar 

  5. Friml, J., Auxin transport—shaping the plant, Curr. Opin. Plant Biol., 2003, vol. 6, pp. 7–12.

    Article  PubMed  CAS  Google Scholar 

  6. Brunoud, G., Wells, D.M., Oliva, M., Larrieu, A., Mirabet, V., Burrow, A.H., Beeckman, T., Kepinski, S., Traas, J., Bennett, M.J., and Vernoux, T., A novel sensor to map auxin response and distribution at high spatio-temporal resolution, Nature, 2012, vol. 482, no. 7383, pp. 103–106

    Article  PubMed  CAS  Google Scholar 

  7. Tamas, I.A. and Davies, P.J., Dynamics and control of phloem loading of indole-3-acetic acid in seedling cotyledons of Ricinus communis, J. Exp. Bot., 2016, vol. 15, pp. 4755–4765.

    Article  CAS  Google Scholar 

  8. Raghavendra, A., Gonugunta, V.K., Christmann, A., and Grill, E., ABA perception and signaling, Trends Plant Sci., 2010, vol. 15, pp. 395–401.

    Article  PubMed  CAS  Google Scholar 

  9. Ruggiero, B., Koiwa, H., Manabe, Y., Quist, T.M., Inan, G., Saccardo, F., Joly, R.J., Hasegawa, P.M., Bressan, P.M., and Maggio, A., Uncoupling the effects of ABA on plant growth and water relations: analysis of sto1/nced3, BA deficient salt stress tolerant mutant in Arabidopsis thaliana, Plant Physiol., 2004, vol. 136, pp. 3134–3147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Verslues, P.E. and Zhu, J.K., Before and beyond ABA: upstream sensing and internal signals that determine ABA accumulation and response under abiotic stress, Biochem. Soc. Trans., 2005, vol. 33, pp. 375–379.

    Article  PubMed  CAS  Google Scholar 

  11. Song, Y.W., Xiang, F.Y., Zhang, G.Z., Miao, Y.C., and Song, C.P., Abscisic acid as an internal integrator of multiple physiological processes modulates leaf senescence onset in Arabidopsis thaliana, Front. Plant Sci., 2016, vol. 7: 181.

    PubMed  PubMed Central  Google Scholar 

  12. Endo, A., Nelson, K.M., Thoms, K., Abrams, S.R., Nambara, E., and Sato, Y., Functional characterization of xanthoxin dehydrogenase in rice, J. Plant Physiol., 2014, vol. 171, pp. 1231–1240.

    Article  PubMed  CAS  Google Scholar 

  13. Gonzales-Guzman, M., Apostolova, N., Belles, J.M., Barrero, J.M., Piqueras, P., Ponce, M.R., Micol, J.L., Serrano, R., and Rodríguez, P.L., The short-chain alcohol dehydrogenase ABA2 catalyzes the conversion of xanthoxin to abscisic aldehyde, Plant Cell, 2002, vol. 14, pp. 1833–1846.

    Article  CAS  Google Scholar 

  14. Qin, X. and Zeevaart, J.A.D., The 9-cis-epoxycarotenoid cleavage reaction is the key regulatory step of abscisic acid biosynthesis in water-stressed bean, Proc. Natl. Acad. Sci. USA, 1999, vol. 96, pp. 15 354–15 361.

    Article  CAS  Google Scholar 

  15. Mano, Y. and Nemoto, K., The pathway of auxin biosynthesis in plants, J. Exp. Bot., 2012, vol. 63, no. 8, pp. 2853–2872

    Article  PubMed  CAS  Google Scholar 

  16. Pin, P.A., Benlloch, R., Bonnet, D., Wremerth-Weich, E., Kraft, T., Gielen, J.J.L., and Nilsson, O., An antagonistic pair of FThomologs mediates the control of flowering time in sugar beet, Science, 2010, vol. 330, pp. 1397–1400.

    Article  PubMed  CAS  Google Scholar 

  17. Pan, X.Q., Welti, R., and Wang, X.M., Quantitative analysis of major plant hormones in crude plant extracts by high-performance liquid chromatographymass spectrometry, Nature, 2010, vol. 5, pp. 986–992.

    CAS  Google Scholar 

  18. Alabadí, D. and Blázquez, M.A., Molecular interactions between light and hormone signaling to control plant growth, Plant Mol. Biol., 2009, vol. 69, pp. 409–417.

    Article  PubMed  CAS  Google Scholar 

  19. Shao, J.H., Xu, Z.H., Zhang, N., Shen, Q., and Zhang, R.F., Contribution of indole-3-acetic acid in the plant growth promotion by the rhizospheric strain Bacillus amyloliquefaciens SQR9, Biol. Fertil. Soils, 2015, vol. 51, pp. 321–330.

    Article  CAS  Google Scholar 

  20. Beilby, M.J., Turi, C.E., Baker, T.C., Tymm, F.J., and Murch, S.J., Circadian changes in endogenous concentrations of indole-3-acetic acid, melatonin, serotonin, abscisic acid and jasmonic acid in Characeae (Chara australis Brown), Plant Signal. Behav., 2015, vol. 10: e1082697. doi 10.1080/15592324.2015.1082697

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Soh, M.S., Hong, S.H., Kim, B.C., Vizir, I., Park, D.H., Choi, G., Hong, M.Y., Chun, Y.Y., Furuya, M., and Nam, H.G., Regulation of both lightand auxin-mediated development by the Arabidopsis IAA3/SHY2 gene, J. Plant Biol., 1999, vol. 42, pp. 239–246.

    Article  CAS  Google Scholar 

  22. Li, W.M., Xu, L., Wu, J., Ma, L.L., Liu, M.Q., Jiao, J.G., Li, H.X., and Hu, F., Effects of indole-3-acetic acid (IAA), a plant hormone, on the ryegrass yield and the removal of fluoranthene from soil, Int. J. Phytoremediation, 2015, vol. 17, pp. 422–428.

    Article  PubMed  CAS  Google Scholar 

  23. Wang, J.J. and Guo, H.S., Cleavage of INDOLE-3-ACETIC ACID INDUCIBLE28 mRNA by MicroRNA847 upregulates auxin signaling to modulate cell proliferation and lateral organ growth in Arabidopsis, Plant Cell, 2015, vol. 27, pp. 574–590.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Barrero, J.M., Piqueras, P., González-Guzmán, M., Serrano, R., Rodríguez, P., Ponce, M.R., and Micol, J., A mutational analysis of the ABA1 gene of Arabidopsis thaliana highlights the involvement of ABA in vegetative development, J. Exp. Bot., 2005, vol. 56, pp. 2071–2083.

    Article  PubMed  CAS  Google Scholar 

  25. Kuromori, T.S., Fujita, M., Urano, K., Tanabata, T., Sugimoto, E., and Shinozaki, K., Overexpression of AtABCG25 enhances the abscisic acid signal inguard cells and improves plant water use efficiency, Plant Sci., 2016, vol. 251, pp. 75–81.

    Article  PubMed  CAS  Google Scholar 

  26. Danilova, M.N., Kudryakova, N.V., Doroshenko, A.S., Zabrodin, D.A., Vinogradov, N.S., and Kuznetsov, V.V., Molecular and physiological responses of Arabidopsis thaliana plants deficient in the genes responsible for ABA and cytokinin reception and metabolism to heat shock, Russ. J. Plant Physiol., 2016, vol. 63, pp. 308–318.

    Article  CAS  Google Scholar 

  27. Guo, H.J., Sun, Y.H., Peng, X.H., Wang, Q.Y., Harris, M., and Ge, F., Up-regulation of abscisic acid signaling pathway facilitates aphid xylem absorption and osmoregulation under drought stress, J. Exp. Bot., 2016, vol. 67, pp. 681–693.

    Article  PubMed  CAS  Google Scholar 

  28. Li, W.Q., Yamaguchi, S., Khan, M.A., An, P., Liu, X.J., and Tran, L., Roles of gibberellins and abscisic acid in regulating germination of Suaeda salsa dimorphic seeds under salt stress, Front. Plant Sci., 2015, vol. 6: 1235. doi 10.3389/fpls.2015.01235

    PubMed  Google Scholar 

  29. Wang, Z.Y., Gehring, C., Zhu, J.H., Li, F.M., Zhu, J.K., and Xiong, L.M., The Arabidopsis vacuolar sorting receptor1 is required for osmotic stressinduced abscisic acid biosynthesis, Plant Physiol., 2015, vol. 167, pp. 137–152.

    Article  PubMed  CAS  Google Scholar 

  30. Zandalinas, S.I., Rivero, R.M., Martínez, V., Gómez-Cadenas, A., and Arbona, V., Tolerance of citrus plants to the combination of high temperatures and drought is associated to the increase in transpiration modulated by a reduction in abscisic acid levels, BMC Plant Biol., 2016, vol. 16: 105. doi 10.1186/s12870-016-0791-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Liang.

Additional information

The article is published in the original.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, N.G., Cheng, D.Y., Liu, Q.H. et al. Vernalization and Photoperiods Mediated IAA and ABA Synthesis Genes Expression in Beta vulgaris. Russ J Plant Physiol 65, 642–650 (2018). https://doi.org/10.1134/S1021443718050126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718050126

Keywords

Navigation