Skip to main content
Log in

Strigolactones as Regulators of Symbiotrophy of Plants and Microorganisms

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Strigolactones (SLs) are signal molecules of a butenolide nature from the apocarotenoids family that are synthesized by plant organisms. They are widely propagated in nature and control different aspects of plant development, which allows us to consider them as phytohormones. It is known that SLs production and release into the rhizosphere are enhanced under a deficit of basic elements of plant nutrition. In addition, these compounds carry out the signaling function in the course of establishing supraorganismal relationships upon parasitism and symbiosis. In this review, the role of SLs in the formation of arbuscular mycorrhiza (AM), which provides a symbiotic pathway of Pi uptake by plants and partly nitrogen-fixing legume nodules, is examined. The data on SLs impact on AM fungi (AMFs) development at presymbiotic and symbiotic stages of plant growth were generalized. The main peculiarities of SLs structure providing their efficiency as “branching factors” of AMF hyphae and basic mechanisms of the possible influence of SLs on AMFs, including stimulation of mitochondria biogenesis, were described. Analysis of these data and phenotypes of plant mutants with disturbances in SLs biosynthesis and its regulation and also SLs perception and transport leads to the conclusion that their role in AM development is predominantly revealed in induction of AMF hyphae branching at the presymbiotic plant growth stage and is associated with plant response to Pi deficit. Analysis of the role these components of common symbiotic signaling cascade play in the regulation of SLs biosynthesis in the course of AM development and nitrogen-fixing legumes nodules was carried out. An important role of SLs in nodule development likely caused by their endogenous influence on its organogenesis was demonstrated. A possibility of the presence of different pathways usable by a plant upon AM and nodule development for activation of common symbiotic transcriptional factors, NSP1 and NSP2, participating in the regulation of SLs biosynthesis is discussed. The data concerning structural specificity of SLs and the results of phylogenetic analysis of genes encoding different components of SLs biosynthesis and signaling pathways and also symbiotic signaling cascade in plants provide evidence for the possible transformation of SLs signaling function from the hormonal one manifested inside the plant into the communicative one providing the establishment of interorganismal relations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AM:

arbuscular mycorrhiza

AMF:

arbuscularmycorrhize fungus

HBF:

hyphae branching factor

MEC:

minimal effective concentration

Pi :

inorganic orthophosphate

SL:

strigolactone

TF:

transcriptional factor

References

  1. De Saint Germain, A., Bonhomme, S., Boyer, F.D., and Rameau, C., Novel insights into strigolactone distribution and signalling, Curr. Opin. Plant Biol., 2013, vol. 16, no. 5, pp. 583–589.

    Article  PubMed  Google Scholar 

  2. Cavar, S., Zwanenburg, B., and Tarkowski, P., Strigolactones: occurrence, structure, and biological activity in the rhizosphere, Phytochem. Rev., 2015, vol. 14, no. 4, pp. 691–711.

    Article  CAS  Google Scholar 

  3. Morffy, N., Faure, L., and Nelson, D.C., Smoke and hormone mirrors: action and evolution of karrikin and strigolactone signaling, Trends Genet., 2016, vol. 32, no. 3, pp. 176–188.

    Article  CAS  PubMed  Google Scholar 

  4. Tokunaga, T., Medicago truncatula, H., and Akiyama, K., Medicaol, a strigolactone identified as a putative didehydroorobanchol isomer, from Medicago truncatula, Phytochemistry, 2015, vol. 111, pp. 91–97.

    Article  CAS  PubMed  Google Scholar 

  5. Yoneyama, K., Xie, X., Kisugi, T., Nomura, T., Sekimoto, H., Yokota, T., and Yoneyama, K., Characterization of strigolactones exuded by Asteraceae plants, Plant Growth Regul., 2011, vol. 65, no. 3, pp. 495–504.

    Article  CAS  Google Scholar 

  6. Zwanenburg, B. and Pospíšil, T., Structure and activity of strigolactones: new plant hormones with a rich future, Mol. Plant, 2013, vol. 6, no. 1, pp. 38–62.

    Article  CAS  PubMed  Google Scholar 

  7. Kohlen, W., Charnikhova, T., Liu, Q., Bours, R., Domagalska, M.A., Beguerie, S., Verstappen, F., Leyser, O., Bouwmeester, H.J., and Ruyter-Spira, C., Strigolactones are transported through the xylem and play a key role in shoot architectural response to phosphate deficiency in non-AM host Arabidopsis, Plant Physiol., 2011, vol. 155, no. 2, pp. 974–987.

    Article  CAS  PubMed  Google Scholar 

  8. Proust, H., Hoffmann, B., Xie, X., Yoneyama, K., Schaefer, D.G., Yoneyama, K., Nogué, F., and Rameau, C., Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens, Development, 2011, vol. 138, no. 8, pp. 1531–1539.

    Article  CAS  PubMed  Google Scholar 

  9. Delaux, P.M., Xie, X., Timme, R.E., Puech-Pages, V., Dunand, C., Lecompte, E., Delwiche, C.F., Yoneyama, K., Bécard, G., and Séjalon-Delmas, N., Origin of strigolactones in the green lineage, New Phytol., 2012, vol. 195, no. 4, pp. 857–871.

    Article  CAS  PubMed  Google Scholar 

  10. Xie, X., Yoneyama, K., Kisugi, T., Uchida, K., Ito, S., Akiyama, K., Medicago truncatula, H., Yokota, T., Nomura, T., and Yoneyama, K., Confirming stereochemical structures of strigolactones produced by rice and tobacco, Mol. Plant, 2013, vol. 6, pp. 153–163.

    Article  CAS  PubMed  Google Scholar 

  11. Yoneyama, K., Xie, X., Sekimoto, H., Takeuchi, Y., Ogasawara, S., Akiyama, K., Medicago truncatula, H., and Yoneyama, K., Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants, New Phytol., 2008, vol. 179, no. 2, pp. 484–494.

    Article  CAS  PubMed  Google Scholar 

  12. Liu, W., Kohlen, W., Lillo, A., Op den Camp, R., Ivanov, S., Hartog, M., Limpens, E., Jamil, M., Smaczniak, C., Kaufmann, K., Yang, W.C., Hooiveld,G.J.E.J., Charnikhova, T., Bouwmeester, H.J., Bisseling, T., et al., Strigolactone biosynthesis in Medicago truncatula and rice requires the symbiotic GRAS-type transcription factors NSP1 and NSP2, Plant Cell, 2011, vol. 23, no. 10, pp. 3853–3865.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. López-Ráez, J.A., Charnikhova, T., Gómez-Roldán, V., Matusova, R., Kohlen, W., De Vos, R., Verstappen, F., Puech-Pages, V., Bécard, G., Mulder, P., and Bouwmeester, H., Tomato strigolactones are derived from carotenoids and their biosynthesis is promoted by phosphate starvation, New Phytol., 2008, vol. 178, no. 4, pp. 863–874.

    Article  PubMed  Google Scholar 

  14. Kohlen, W., Charnikhova, T., Bours, R., López-Ráez, J.A., and Bouwmeester, H., Tomato strigolactones: a more detailed look, Plant Signal. Behav., 2013, vol. 8, no. 1, pp. 124–130.

    Article  Google Scholar 

  15. Kretzschmar, T., Kohlen, W., Sasse, J., Borghi, L., Schlegel, M., Bachelier, J.B., Reinhardt, D., Bours, R., Bouwmeester, H.J., and Martinoia, E., A petunia ABC protein controls strigolactone-dependent symbiotic signalling and branching, Nature, 2012, vol. 483, pp. 341–346.

    Article  CAS  PubMed  Google Scholar 

  16. Yoneyama, K., Xie, X., Kim, H.I., Kisugi, T., Nomura, T., Sekimoto, H., Yokota, T., and Yoneyama, K., How do nitrogen and phosphorus deficiencies affect strigolactone production and exudation? Planta, 2012, vol. 235, pp. 1197–1207.

    Article  CAS  PubMed  Google Scholar 

  17. Akiyama, K., Matsuzaki, K.I., and Medicago truncatula, H., Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi, Nature, 2005, vol. 435, pp. 824–827. doi 10.1038/nature03608

    Article  CAS  PubMed  Google Scholar 

  18. Akiyama, K., Ogasawara, S., Ito, S., and Medicago truncatula, H., Structural requirements of strigolactones for hyphal branching in AM fungi, Plant Cell Physiol., 2010, vol. 51, no. 7, pp. 1104–1117.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Cook, C.E., Whichard, L.P., Turner, B., Wall, M.E., and Egley, G.H., Germination of witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant, Science, 1966, vol. 154, no. 3753, pp. 1189–1190.

    Article  CAS  PubMed  Google Scholar 

  20. Besserer, A., Puech-Pagès, V., Kiefer, P., Gomez-Roldan, V., Jauneau, A., Roy, S., Portais, J.-C., Roux, C., Bécard, G., and Séjalon-Delmas, N., Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria, PLoS Biol., 2006, vol. 4, no. 7, pp. 1239–1247.

    Article  CAS  Google Scholar 

  21. Matusova, R., Rani, K., Verstappen, F.W.A., Franssen, M.C.R., Beale, M.H., and Bouwmeester, H.J., The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway, Plant Physiol., 2005, vol. 139, no. 2, pp. 920–934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Lin, H., Wang, R., Qian, Q., Yan, M., Meng, X., Fu, Z., Yan, C., Jiang, B., Su, Z., Li, J., and Wang, Y., DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth, Plant Cell, 2009, vol. 21, no. 5, pp. 1512–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Alder, A., Jamil, M., Marzorati, M., Bruno, M., Vermathen, M., Bigler, P., Ghisla, S., Bouwmeester, H., Beyer, P., and Al-Babili, S., The path from β-carotene to carlactone, a strigolactone-like plant hormone, Science, 2012, vol. 335, pp. 1348–1351.

    Article  CAS  PubMed  Google Scholar 

  24. Challis, R.J., Hepworth, J., Mouchel, C., Waites, R., and Leyser, O., A role for more axillary growth1 (MAX1) in evolutionary diversity in strigolactone signaling upstream of MAX2, Plant Physiol., 2013, vol. 161, pp. 1885–1902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Seto, Y., Sado, A., Asami, K., Hanada, A., Umehara, M., Akiyama, K., and Yamaguchi, S., Carlactone is an endogenous biosynthetic precursor for strigolactones, Proc. Natl. Acad. Sci. USA, 2014, vol. 111, pp. 1640–1645.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zhang, Y., van Dijk, A.D., Scaffidi, A., Flematti, G.R., Hofmann, M., Charnikhova, T., Verstappen, F., Hepworth, J., van der Krol, S., Leyser, O., Smith, S.M., Zwanenburg, B., Al-Babili, S., Ruyter-Spira, C., and Bouwmeester, H.J., Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis, Nat. Chem. Biol., 2014, vol. 10, no. 12, pp. 1028–1033.

    Article  PubMed  Google Scholar 

  27. Gomez-Roldan, V., Fermas, S., Brewer, P.B., Puech-Pagès, V., Dun, E.A., Pillot, J.P., Letisse, F., Matusova, R., Danoun, S., Portais, J.C., Bouwmeester, H., Bécard, G., Beveridge, C.A., Rameau, C., and Rochange, S.F., Strigolactone inhibition of shoot branching, Nature, 2008, vol. 455, no. 7210, pp. 189–194.

    Article  CAS  PubMed  Google Scholar 

  28. Umehara, M., Hanada, A., Yoshida, S., Akiyama, K., Arite, T., Takeda-Kamiya, N., Magome, H., Kamiya, Y., Shirasu, K., Yoneyama, K., Kyozuka, J., and Yamaguchi, S., Inhibition of shoot branching by new terpenoid plant hormones, Nature, 2008, vol. 455, no. 7210, pp. 195–201.

    Article  CAS  PubMed  Google Scholar 

  29. Brewer, P.B., Koltai, H., and Beveridge, C.A., Diverse roles of strigolactones in plant development, Mol. Plant, 2013, vol. 6, no. 1, pp. 18–28.

    Article  CAS  PubMed  Google Scholar 

  30. Kumar, M., Pandya-Kumar, N., Kapulnik, Y., and Koltai, H., Strigolactone signaling in root development and phosphate starvation, Plant Signal. Behav., 2015, vol. 10, no. 7: e1045174.

    PubMed  PubMed Central  Google Scholar 

  31. Kapulnik, Y. and Koltai, H., Fine-tuning by strigolactones of root response to low phosphate, J. Integr. Plant Biol., 2016, vol. 58, no. 3, pp. 203–212.

    Article  CAS  PubMed  Google Scholar 

  32. Foo, E., Yoneyama, K., Hugill, C.J., Quittenden, L.J., and Reid, J.B., Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency, Mol. Plant, 2013, vol. 6, no. 1, pp. 76–87.

    Article  CAS  PubMed  Google Scholar 

  33. Jamil, M., Charnikhova, T., Verstappe, F., Ali, Z., Wainwright, H., and Bouwmeester, H.J., Effect of phosphate-based seed priming on strigolactone production and Striga hermonthica infection in cereals, Weed Res., 2014, vol. 54, no. 3, pp. 307–313.

    Article  CAS  Google Scholar 

  34. Yoneyama, K., Xie, X., Kisugi, T., Nomura, T., and Yoneyama, K., Nitrogen and phosphorus fertilization negatively affects strigolactone production and exudation in sorghum, Planta, 2013, vol. 238, no. 5, pp. 885–894.

    Article  CAS  PubMed  Google Scholar 

  35. Borghi, L., Liu, G.W., Emonet, A., Kretzschmar, T., and Martinoia, E., The importance of strigolactone transport regulation for symbiotic signaling and shoot branching, Planta, 2016, vol. 243, no. 6, pp. 1351–1360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zwanenburg, B., Pospíšil, T., and Zeljkovic, S.C., Strigolactones: new plant hormones in action, Planta, 2016, vol. 243, no. 6, pp. 1311–1326.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. López-Ráez, J.A., How drought and salinity affect arbuscular mycorrhizal symbiosis and strigolactone biosynthesis? Planta, 2015, vol. 243, no. 6, pp. 1375–1385.

    Article  PubMed  Google Scholar 

  38. Screpanti, C., Fonné-Pfister, R., Lumbroso, A., Rendine, S., Lachia, M., and de Mesmaeker, A., Strigolactone derivatives for potential crop enhancement applications, Bioorg. Medic. Chem. Lett., 2016, vol. 26, pp. 2392–2400.

    Article  CAS  Google Scholar 

  39. Mycorrhizae: Sustainable Agriculture and Forestry, Siddiqui, Z.A., Akhtar, M.S., and Futai, K., Eds., New Delhi: Springer, 2008.

  40. Smith, S.E. and Read, D.J., Mycorrhizal Symbiosis, Burlington: Elsevier, 2008.

    Google Scholar 

  41. Gutjahr, C. and Parniske, M., Cell and developmental biology of arbuscular mycorrhiza symbiosis, Annu. Rev. Cell Dev. Biol., 2013, vol. 29, pp. 593–617.

    Article  CAS  PubMed  Google Scholar 

  42. Delaux, P.M., Varala, K., Edger, P.P., Coruzzi, G.M., Pires, J.C., and Ané, J.-M., Comparative phylogenomics uncovers the impact of symbiotic associations on host genome evolution, PLoS Genet., 2014, vol. 10, no. 7: e1004487.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Delaux, P.M., Radhakrishnan, G.V., Jayaraman, D., Cheema, J., Malbreil, M., Volkening, J.D., Sekimoto, H., Nishiyama, T., Melkonian, M., Pokorny, L., Rothfels, C.J., Sederoffm, H.W., Stevenson, D.W., Surek, B., Zhang, Y., et al., Algal ancestor of land plants was preadapted for symbiosis, Proc. Natl. Acad. Sci. USA, 2015, vol. 112, no. 43, pp. 13390–13395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gobbato, E., Recent developments in arbuscular mycorrhizal signaling, Curr. Opin. Plant Biol., 2015, vol. 26, pp. 1–7.

    Article  PubMed  Google Scholar 

  45. Oldroyd, G.E.D., Speak, friend, and enter: signalling systems that promote beneficial symbiotic associations in plants, Nat. Rev. Microbiol., 2013, vol. 11, no. 4, pp. 252–263.

    Article  CAS  PubMed  Google Scholar 

  46. Van Zeijl, A., Liu, W., Xiao, T.T., Kohlen, W., Yang, W.C., Bisseling, T., and Geurts, R., The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis, BMC Plant Biol., 2015, vol. 15:260.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tisserant, E., Kohler, A., Dozolme-Seddas, P., Balestrini, R., Benabdellah, K., Colard, A., Croll, D., da Silva, C., Gomez, S.K., Koul, R., Ferrol, N., Fiorilli, V., Formey, D., Franken, P., Helber, N., et al., The transcriptome of the arbuscular mycorrhizal fungus Glomus intraradices (DAOM 197198) reveals functional tradeoffs in an obligate symbiont, New Phytol., 2012, vol. 193, pp. 755–769.

    Article  CAS  PubMed  Google Scholar 

  48. Manck-Götzenberger, J. and Requena, N., Arbuscular mycorrhiza symbiosis induces a major transcriptional reprogramming of the Potato SWEET sugar transporter family, Front. Plant Sci., 2016, vol. 7: 487. doi 10.3389/ fpls.2016.00487

    Article  PubMed  PubMed Central  Google Scholar 

  49. In Vitro Culture of Mycorrhizas, Declerck, S., Strullu, D.G., and Fortin, A., Eds., Berlin, Heidelberg: Springer, 2005.

  50. Nadal, M. and Paszkowski, U., Polyphony in the rhizosphere: presymbiotic communication in arbuscular mycorrhizal symbiosis, Curr. Opin. Plant Biol., 2013, vol. 16, pp. 1–7.

    Article  Google Scholar 

  51. Gadkar, V., David-Schwartz, R., Nagahashi, G., Douds, D.D., Jr., Wininger, S., and Kapulnik, Y., Root exudate of pmi tomato mutant M161 reduces AM fungal proliferation in vitro, FEMS Microbiol. Lett., 2003, vol. 223, pp. 193–198.

    Article  CAS  PubMed  Google Scholar 

  52. Buee, M., Rossignol, M., Jauneau, A., Ranjeva, R., and Bécard, G., The pre-symbiotic growth of arbuscular mycorrhizal fungi is induced by a branching factor partially purified from plant root exudates, Mol. Plant–Microbe Interact., 2000, vol. 13, no. 6, pp. 693–698.

    Article  CAS  PubMed  Google Scholar 

  53. Nagahashi, G. and Douds, D.D., Jr., Partial separation of root exudate components and their effects upon the growth of germinated spores of AM fungi, Mycol. Res., 2000, vol. 104, no. 12, pp. 1453–1464.

    Article  Google Scholar 

  54. Tamasloukht M.B., Séjalon-Delmas, N., Kluever, A., Jauneau, A., Roux, C., Bécard, G., and Franken, P., Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea, Plant Physiol., 2003, vol. 131, pp. 1468–1478.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Vierheilig, H., Lerat, S., and Piché, Y., Systemic inhibition of arbuscular mycorrhiza development by root exudates of cucumber plants colonized by Glomus mosseae, Mycorrhiza, 2003, vol. 13, pp. 167–170.

    Article  CAS  PubMed  Google Scholar 

  56. Steinkellner, S., Lendzemo, V., Langer, I., Schweiger, P., Khaosaad, T., Toussaint, J.-P., and Vierheilig, H., Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant–fungus interactions, Molecules, 2007, vol. 12, pp. 1290–1306.

    Article  CAS  PubMed  Google Scholar 

  57. Nagahashi, G. and Douds, D.D., Jr., The effects of hydroxy fatty acids on the hyphal branching of germinated spores of AM fungi, Fungal Biol., 2011, vol. 115, pp. 351–358.

    Article  CAS  PubMed  Google Scholar 

  58. Prandi, C., Occhiato, E.G., Tabasso, S., Bonfante, P., Novero, M., Scarpi, D., Bova, M.E., and Miletto, I., New potent fluorescent analogues of strigolactones: synthesis and biological activity in parasitic weed germination and fungal branching, Eur. J. Org. Chem., 2011, pp. 3781–3793.

    Google Scholar 

  59. Besserer, A., Bécard, G., Jauneau, A., Roux, C., and Séjalon-Delmas, N., GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism, Plant Physiol., 2008, vol. 148, pp. 402–413.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Besserer, A., Bécard, G., Roux, C., and Séjalon-Delmas, N., Role of mitochondria in the response of arbuscular mycorrhizal fungi to strigolactones, Plant Signal. Behav., 2009, vol. 4, no. 1, pp. 75–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Anca, I.A., Lumini, E., Ghignone, S., Salvioli, A., Bianciotto, V., and Bonfante, P., The ftsZ gene of the endocellular bacterium 'Candidatus Glomeribacter gigasporarum' is preferentially expressed during the symbiotic phases of its host mycorrhizal fungus, Mol. Plant–Microbe Interact., 2009, vol. 22, no. 3, pp. 302–310.

    Article  CAS  PubMed  Google Scholar 

  62. Lumini, E., Bianciotto, V., Jargeat, P., Novero, M., Salvioli, A., Faccio, A., Bécard, G., and Bonfante, P., Presymbiotic growth and sporal morphology are affected in the arbuscular mycorrhizal fungus Gigaspora margarita cured of its endobacteria, Cell Microbiol., 2007, vol. 9, no. 7, pp. 1716–1729.

    Article  CAS  PubMed  Google Scholar 

  63. Ruyter-Spira, C. and Bouwmeester, H., Strigolactones affect development in primitive plants. The missing link between plants and arbuscular mycorrhizal fungi? New Phytol., 2012, vol. 195, pp. 730–733.

    Article  CAS  PubMed  Google Scholar 

  64. Yao, R., Ming, Z., Yan, L., Li, S., Wang, F., Ma, S., Yu, C., Yang, M., Chen, L., Chen, L., Li, Y., Yan, C., Miao, D., Sun, Z., Yan, J., et al., DWARF14 is a non canonical hormone receptor for strigolactone, Nature, 2016, vol. 536, pp. 469–473.

    Article  CAS  PubMed  Google Scholar 

  65. Waters, M.T., Scaffidi, A., Moulin, S.L.Y., Sun, Y.K., Flematti, G.R., and Smith, S.M., A Selaginella moellendorffii ortholog of KARRIKIN INSENSITIVE2 functions in Arabidopsis development but cannot mediate responses to karrikins or strigolactones, Plant Cell, 2015, vol. 27, pp. 1925–1944.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gutjahr, C., Gobbato, E., Choi, J., Riemann, M., Johnston, M.G., Summers, W., Carbonnel, S., Mansfield, C., Yang, S.Y., Nadal, M., Acosta, I., Takano, M., Jiao, W.B., Schneeberger, K., Kelly, K.A., et al., Rice perception of symbiotic arbuscular mycorrhizal fungi requires the karrikin receptor complex, Science, 2015, vol. 350, no. 6267, pp. 1521–1524.

    Article  CAS  PubMed  Google Scholar 

  67. Conn, C.E., Bythell-Douglas, R., Neumann, D., Yoshida, S., Whittington, B., Westwood, J.H., Shdirasu, K., Bond, C.S., Dyer, K.A., and Nelson, D.C., Convergent evolution of strigolactone perception enabled host detection in parasitic plants, Science, 2015, vol. 349, no. 6247, pp. 540–543.

    Article  CAS  PubMed  Google Scholar 

  68. Belmondo, S., Marschall, R., Tudzynski, P., López Ráez J.A., Artuso, E., Prandi, C., and Lanfranco, L., Identification of genes involved in fungal responses to strigolactones using mutants from fungal pathogens, Curr. Genet., 2017, vol. 63, no. 2, pp. 201–213.

    Article  CAS  PubMed  Google Scholar 

  69. Keeley, J.E., Pausas, J.G., Rundel, P.W., Bond, W.J., and Bradstock, R.A., Fire as an evolutionary pressure shaping plant traits, Trends Plant Sci., 2011, vol. 16, no. 8, pp. 406–411.

    Article  CAS  PubMed  Google Scholar 

  70. Harrison, M.J., Pumplin, N., Breuillin, F.J., Noar, R.D., and Park, H.J., Phosphate transporters in arbuscular mycorrhizal symbiosis, in Arbuscular Mycorrhizas: Physiology and Function, Koltai, H. and Kapulnik, Y., Eds., Dordrecht: Kluwer, 2010, pp. 117–135.

    Chapter  Google Scholar 

  71. Lambers, H., Shane, M.W., Cramer, M.D., Pearse, S.J., and Veneklaas, E.J., Root structure and functioning for efficient acquisition of phosphorus: matching morphological and physiological traits, Ann. Bot., 2006, vol. 98, pp. 693–713.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Breuillin, F., Schramm, J., Hajirezaei, M., Ahkami, A., Favre, P., Druege, U., Hause, B., Bucher, M., Kretzschmar, T., Bossolini, E., Kuhlemeier, C., Martinoia, E., Franken, P., Scholz, U., and Reinhardt, D., Phosphate systemically inhibits development of arbuscular mycorrhiza in Petunia hybrida and represses genes involved in mycorrhizal functioning, Plant J., 2010, vol. 64, pp. 1002–1017.

    Article  CAS  PubMed  Google Scholar 

  73. Balzergue, C., Puech-Pagès, V., Bécard, G., and Rochange, S.F., The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events, J. Exp. Bot., 2011, vol. 62, no. 3, pp. 1049–1060.

    Article  CAS  PubMed  Google Scholar 

  74. Lopéz-Ráez, J.A., Charnikhova, T., Fernández, I., Bouwmeester, H., and Pozo, M.J., Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato, J. Plant Physiol., 2011, vol. 168, pp. 294–297.

    Article  PubMed  Google Scholar 

  75. Koltai, H., LekKala, S.P., Bhattacharya, C., Mayzlish-Gati, E., Resnick, N., Wininger, S., Dor, E., Yoneyama, K., Yoneyama, K., Hershenhorn, J., Joel, D.M., and Kapulnik, Y. A tomato strigolactoneimpaired mutant displays aberrant shoot morphology and plant interactions, J. Exp. Bot., 2010, vol. 61, no. 6, pp. 1739–1749.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yoshida, S., Kameoka, H., Tempo, M., Akiyama, K., Umehara, M., Yamaguchi, S., Medicago truncatula, H., Kyozuka, J., and Shirasu, K., The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis, New Phytol., 2012, vol. 196, pp. 1208–1216.

    Article  CAS  PubMed  Google Scholar 

  77. Delaux, P.-M., Bécard, G., and Combier, J.-P., NSP1 is a component of the Myc signaling pathway, New Phytol., 2013, vol. 199, pp. 59–65.

    Article  CAS  PubMed  Google Scholar 

  78. Staehelin, C., Xie, Z., Illana, A., and Vierheilig, H., Long-distance transport of signals during symbiosis, Plant Signal. Behav., 2011, vol. 6, no. 3, pp. 372–377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Takeda, N., Tsuzuki, S., Suzaki, T., Parniske, M., and Kawaguchi, M., CERBERUS and NSP1 of Lotus japonicus are common symbiosis genes that modulate arbuscular mycorrhiza development, Plant Cell Physiol., 2013, vol. 54, no. 10, pp. 1711–1723.

    Article  CAS  PubMed  Google Scholar 

  80. Guillotin, B., Couzigou, J.-M., and Combier, J.-P., NIN is involved in the regulation of arbuscular mycorrhizal symbiosis, Front. Plant Sci., 2016, vol. 7: 1704.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Kaló, P., Gleason, C., Edwards, A., Marsh, J., Mitra, R.M., Hirsch, S., Jakab, J., Sims, S., Long, S.R., Rogers, J., Kiss, G.B., Downie, J.A., and Oldroyd, G.E.D., Nodulation signaling in legumes requires NSP2, a member of the GRAS family of transcriptional regulators, Science, 2005, vol. 308, pp. 1786–1789.

    Article  PubMed  Google Scholar 

  82. Smit, P., Raedts, J., Portyanko, V., Debellé, F., Gough, C., Bisseling, T., and Geurts, R., NSP1 of the GRAS protein family is essential for rhizobial Nod factor-induced transcription, Science, 2005, vol. 308, pp. 1789–1791.

    Article  CAS  PubMed  Google Scholar 

  83. Genre, A., Chabaud, M., Balzergue, C., Puech-Pagès, V., Novero, M., Rey, T., Fournier, J., Rochange, S., Bécard, G., Bonfante, P., and Barker, D.G., Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone, New Phytol., 2013, vol. 198, no. 1, pp. 179–189.

    Article  PubMed  Google Scholar 

  84. Murakami, Y., Miwa, H., Imaizumi-Anraku, H., Kouchi, H., Downie, J.A., Kawaguchi, M., and Kawasaki, S., Positional cloning identifies Lotus japonicus NSP2, a putative transcription factor of the GRAS family, required for NIN and ENOD40 gene expression in nodule initiation, DNA Res., 2006, vol. 13, no. 6, pp. 255–265.

    Article  CAS  PubMed  Google Scholar 

  85. Shtark, O.Y., Sulima, A.S., Zhernakov, A.I., Kliukova,M.S., Fedorina, J.V., Pinaev, A.G., Kryukov, A.A., Akhtemova, G.A., Tikhonovich, I.A., and Zhukov, V.A., Arbuscular mycorrhiza development in pea (Pisum sativum L.) mutants impaired in five early nodulation genes including putative orthologs of NSP1 and NSP2, Symbiosis, 2016, vol. 68, pp. 129–144.

    Article  CAS  Google Scholar 

  86. Tsyganov, V.E., Voroshilova, V.A., Priefer, U.B., Borisov, A.Y., and Tikhonovich, I.A., Genetic dissection of the initiation of the infection process and nodule tissue development in the Rhizobium–pea (Pisum sativum L.) symbiosis, Ann. Bot., 2002, vol. 89, pp. 357–366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Oldroyd, G.E.D. and Long, S.R., Identification and characterization of nodulation-signaling pathway 2, a gene of Medicago truncatula involved in Nod factor signaling, Plant Physiol., 2003, vol. 131, pp. 1027–1032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Hirsch, S., Kim, J., Muñoz, A., Heckmann, A.B., Downie, J.A., and Oldroyd, G.E.D., GRAS proteins form a DNA binding complex to induce gene expression during nodulation signaling in Medicago truncatula, Plant Cell, 2009, vol. 21, no. 2, pp. 545–557.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Cerri, M.R., Frances, L., Laloum, T., Auriac, M.C., Niebel, A., Oldroyd, G.E.D., Barker, D.G., Fournier, J., and de Carvalho-Niebel, F., Medicago truncatula ERN transcription factors: regulatory interplay with NSP1/NSP2 GRAS factors and expression dynamics throughout rhizobial infection, Plant Physiol., 2012, vol. 160, no. 4, pp. 2155–2172.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Yokota, K., Soyano, T., Kouchi, H., and Medicago truncatula, M., Function of GRAS proteins in root nodule symbiosis is retained in homologs of a non-legume, rice, Plant Cell Physiol., 2010, vol. 51, no. 9, pp. 1436–1442.

    Article  CAS  PubMed  Google Scholar 

  91. Camps, C., Jardinaud, M.F., Rengel, D., Carrère, S., Hervé, C., Debellé, F., Gamas, P., Bensmihen, S., and Gough, C., Combined genetic and transcriptomic analysis reveals three major signalling pathways activated by Myc-LCOs in Medicago truncatula, New Phytol., 2015, vol. 208, no. 1, pp. 224–240.

    Article  CAS  PubMed  Google Scholar 

  92. Lauressergues, D., Delaux, P.M., Formey, D., Lelandais-Brière, C., Fort, S., Cottaz, S., Bécard, G., Niebel, A., Roux, C., and Combier, J.-P., The microRNA miR171h modulates arbuscular mycorrhizal colonization of Medicago truncatula by targeting NSP2, Plant J., 2012, vol. 72, no. 3, pp. 512–522.

    Article  CAS  PubMed  Google Scholar 

  93. Foo, E. and Davies, N.W., Strigolactones promote nodulation in pea, Planta, 2011, vol. 234, no. 5, pp. 1073–1081.

    Article  CAS  PubMed  Google Scholar 

  94. Deinum, E.E., Geurts, R., Hartog, M., Bisseling, T., and Mulder, B., Computational and experimental evidence that auxin accumulation in nodule and lateral root primordial occurs by different mechanisms, in Biological Nitrogen Fixation, de Bruijn, F.J., Ed., John Wiley & Sons, 2015, vol. 2, pp. 569–570.

    Google Scholar 

  95. Knack, J.J., Wilcox, L.W., Delaux, P.-M., Ané, J.M., Piotrowski, M.J., Cook, M.E., Graham, J.M., and Graham, L.E., Microbiomes of streptophyte algae and bryophytes suggest that a functional suite of microbiota fostered plant colonization of land, Int. J. Plant Sci., 2015, vol. 176, no. 5, pp. 405–420.

    Article  Google Scholar 

  96. Smolikova, G.N. and Medvedev, S.S., Seed carotenoids: synthesis, diversity, and functions, Russ. J. Plant Physiol., 2015, vol. 62, pp. 1–13.

    Article  CAS  Google Scholar 

  97. Croglio, M.P., Haake, J.M., Ryan, C.P., Wang, V.S., Lapier, J., Schlarbaum, J.P., Dayani, Y., Artuso, E., Prandi, C., Koltai, H., Agama, K., Pommier, Y., Chen, Y., Tricoli, L., LaRocque, J.R., et al., Analogs of the novel phytohormone, strigolactone, trigger apoptosis and synergize with PARP inhibitors by inducing DNA damage and inhibiting DNA repair, Oncotarget, 2016, vol. 7, no. 12, pp. 13984–14001.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. F. Shishova.

Additional information

Original Russian Text © O.Yu. Shtark, M.F. Shishova, M.N. Povydysh, G.S. Avdeeva, V.A. Zhukov, I.A. Tikhonovich, 2018, published in Fiziologiya Rastenii, 2018, Vol. 65, No. 2, pp. 83–100.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shtark, O.Y., Shishova, M.F., Povydysh, M.N. et al. Strigolactones as Regulators of Symbiotrophy of Plants and Microorganisms. Russ J Plant Physiol 65, 151–167 (2018). https://doi.org/10.1134/S1021443718020073

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443718020073

Keywords

Navigation