Skip to main content
Log in

Effect of 5-azaC on the growth, flowering time and sexual phenotype of spinach

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

Spinach (Spinacia oleracea L.) is a diploid dioecious plant with a pair of homomorphic sex chromosomes X and Y. Plant DNA methylation, a known process for genome epigenetic modification, regulates gene expression in plants. To explore the effects of DNA methylation on spinach growth and sexual development, spinach seeds were treated with the demethylating reagent 5-azaC. The resulting phenotypes were then investigated, including germination percentage, root length, plant height, flowering time, and sexual phenotype. Results showed that 5-azaC at a low concentration (30 µM) only slightly influenced spinach development but promoted seed germination. The germination percentage, root length, and plant height negatively correlated with 5-azaC at 100–1000 µM. The flowering time significantly reduced at all four treatments with 5-azaC. In addition, 5-azaC influenced the sexual phenotype of spinach and remarkably increased the percentage of monoecious individuals. These results may suggest that vegetative and reproductive growth are both epigenetically regulated by DNA methylation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

5-azaC:

5-azacytidine

5mC:

cytosine methylation

MS-ISSR:

methylation-sensitive-inter-simple sequence repeats

References

  1. Bender, J., DNA methylation and epigenetics, Annu. Rev. Plant Biol., 2004, vol. 55, pp. 41–68.

    Article  CAS  PubMed  Google Scholar 

  2. Henderson, I.R. and Jacobsen, S.E., Epigenetic inheritance in plants, Nature, 2007, vol. 447, pp. 418–424.

    Article  CAS  PubMed  Google Scholar 

  3. Cokus, S.J., Feng, S., Zhang, X., Chen, Z., Merriman, B., Haudenschild, C.D., Pradhan, S., Nelson, S.F., Pellegrini, M., and Jacobsen, S.E., Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning, Nature, 2008, vol. 452, pp. 215–219.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Tariq, M. and Paszkowski, J., DNA and histone methylation in plants, Trends Genet., 2005, vol. 20, pp. 244–251.

    Article  Google Scholar 

  5. Rangwala, S.H. and Richards, E.J., The value-added genome: building and maintaining genomic cytosine methylation landscapes, Curr. Opin. Genet. Dev., 2004, vol. 14, pp. 686–691.

    Article  CAS  PubMed  Google Scholar 

  6. Chan, S.W., Henderson, I.R., and Jacobsen, S.E., Gardening the genome: DNA methylation in Arabidopsis thaliana, Nat. Rev. Genet., 2005, vol. 6, pp. 351–360.

    Article  CAS  PubMed  Google Scholar 

  7. Peng, H. and Zhang, J., Plant genomic DNA methylation in response to stresses: potential applications and challenges in plant breeding, Prog. Nat. Sci., 2009, vol. 19, pp. 1037–1045.

    Article  CAS  Google Scholar 

  8. Haaf, T., The effects of 5-azacytidine and 5-azadeoxycytidine on chromosome structure and function: implications for methylation-associated cellular processes, Pharmacol. Ther., 1995, vol. 65, pp. 19–46.

    Article  CAS  PubMed  Google Scholar 

  9. Mirouze, M. and Paszkowski, J., Epigenetic contribution to stress adaptation in plants, Curr. Opin. Plant Biol., 2011, vol. 14, pp. 267–274.

    Article  CAS  PubMed  Google Scholar 

  10. Marfil, C.F., Asurmendi, S., and Masuelli, R.W., Changes in microRNA expression in a wild tuber-bearing Solanum species induced by 5-azacytidine treatment, Plant Cell Rep., 2012, vol. 31, pp. 1449–1461.

    Article  CAS  PubMed  Google Scholar 

  11. El-Maarri, O., Becker, T., Junen, J., Manzoor, S.S., Diaz-Lacava, A., Schwaab, R., Wienker, T., and Oldenburg, J., Gender specific differences in levels of DNA methylation at selected loci from human total blood: a tendency toward higher methylation levels in males, Hum. Genet., 2007, vol. 122, pp. 505–514.

    Article  CAS  PubMed  Google Scholar 

  12. Fan, R., Zhao, X.L., Wang, H., He, H.Y., Peng, Z.P., Yang, B., Han, T., Wang, W., Wang, X.Q., and Lin, G.W., Abnormal methylation of the sex-determining region Y-box 17 (SOX17) promoter predicts poor prognosis in myelodysplastic syndrome, Clin. Lab., 2014, vol. 60, pp. 1465–1474.

    CAS  PubMed  Google Scholar 

  13. Sekido, R., The potential role of SRY in epigenetic gene regulation during brain sexual differentiation in mammals, Adv. Genet., 2014, vol. 86, pp. 135–165.

    Article  PubMed  Google Scholar 

  14. Cisneros, F.J. and Branch, S., Transplacental exposure to the DNA demethylating agent, 5-AZA-CdR, affects the sexual behavior of CD-1 male mice, Neurotoxicology, 2004, vol. 25, pp. 411–417.

    Article  CAS  PubMed  Google Scholar 

  15. Siroky, J., Castiglione, M.R., and Vyskot, B., DNA methylation patterns of Melandrium album chromosomes, Chromosome Res., 1998, vol. 6, pp. 441–446.

    Article  CAS  PubMed  Google Scholar 

  16. Janoušek, B., Siroky, J., and Vyskot, B., Epigenetic control of sexual phenotype in a dioecious plant Melandrium album, Mol. Gen. Genet., 1996, vol. 250, pp. 483–490.

    Article  PubMed  Google Scholar 

  17. Zhang, W., Wang, X., Yu, Q., Ming, R., and Jiang, J., DNA methylation and heterochromatinization in the male-specific region of the primitive Y chromosome of papaya, Genome Res., 2008, vol. 18, pp. 1938–1943.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Bemis, W.P. and Wilson, G.B., A new hypothesis explaining the genetics of sex determination in Spinacea oleracea L., J. Hered., 1953, vol. 44, pp. 91–95.

    Google Scholar 

  19. Ellis, J.R. and Janick, J., The chromosomes of Spinacea oleracea, Am. J. Bot., 1960, vol. 47, pp. 210–214.

    Article  Google Scholar 

  20. Onodera, Y., Yonaha, I., Masumo, H., Tanaka, A., Niikura, S., Yamazaki, S., and Mikami, T., Mapping of the genes for dioecism and monoecism in Spinacia oleracea L.: evidence that both genes are closely linked, Plant Cell Rep., 2011, vol. 30, pp. 965–971.

    Article  CAS  PubMed  Google Scholar 

  21. Gao, W., Li, S., Li, Z., Huang, Y., Deng, C., and Lu, L., Detection of genome DNA methylation change in spinach induced by 5-azaC, Mol. Cell. Probe, 2014, vol. 28, pp. 163–166.

    Article  CAS  Google Scholar 

  22. Sano, H., Kamada, I., Youssefian, S., Katsumi, M., and Wabiko, H., A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and under methylation of genomic DNA, Mol. Gen. Genet., 1990, vol. 220, pp. 441–447.

    Article  CAS  Google Scholar 

  23. King, G.K., Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine, J. Hort. Sci., 1995, vol. 79, pp. 333–342.

    Google Scholar 

  24. Prakash, A.P. and Kumar, P.P., Inhibition of shoot induction by 5-azacytidine and 5-aza-2′-deoxycytidine in Petunia involves DNA hypomethylation, Plant Cell Rep., 1997, vol. 16, pp. 719–724.

    Article  CAS  Google Scholar 

  25. Vanyushin, B.F., Shorning, B.Yu., Seredina, A.V., and Aleksandrushkina, N.I., The effects of phytohormones and 5-azacytidine on apoptosis in etiolated wheat seedlings, Russ. J. Plant Physiol., 2002, vol. 49, pp. 501–506.

    Article  CAS  Google Scholar 

  26. Christman, J.K., 5-Azacytidine and 5-aza-2′-deoxycytidine as inhibitors of DNA methylation: mechanistic studies and their implications for cancer therapy, Oncogene, 2002, vol. 21, pp. 5483–5495.

    Article  CAS  PubMed  Google Scholar 

  27. Bezdek, M., Koukalova, B., Brzobahaty, B., and Vyskot, B., 5-Azacytidine-induced hypomethylation of tobacco HRS60 tandem DNA repeats in tissue culture, Planta, 1991, vol. 184, pp. 487–490.

    Article  CAS  PubMed  Google Scholar 

  28. Milec, Z., Valárik, M., Bartoš, J., and Safář, J., Can a late bloomer become an early bird? Tools for flowering time adjustment, Biotechnol. Adv., 2014, vol. 32, pp. 200–214.

    Article  PubMed  Google Scholar 

  29. Brock, R.D. and Davidson, J.L., 5-Azacytidine and gamma rays partially substitute for cold treatment in vernalizing winter wheat, Environ. Exper. Bot., 1994, vol. 34, pp. 195–199.

    Article  CAS  Google Scholar 

  30. Kondo, H., Ozaki, H., Itoh, K., Kato, A., and Takeno, K., Flowering induced by 5-azacytidine, a DNA demethylating reagent in a short-day plant, Perilla frutescens var. crispa, Physiol. Plant., 2006, vol. 127, pp. 130–137.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. J. Gao.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S.F., Zhang, G.J., Yuan, J.H. et al. Effect of 5-azaC on the growth, flowering time and sexual phenotype of spinach. Russ J Plant Physiol 62, 670–675 (2015). https://doi.org/10.1134/S1021443715050118

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443715050118

Keywords

Navigation