Skip to main content
Log in

Antioxidant responses of pea genotypes to zinc deficiency

  • Research Papers
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The effects of Zn deficiency on antioxidant responses of two pea (Pisum sativum L.) genotypes, a Zn-efficient IPFD-99-13 and Zn-inefficient KPMR-500, grown in sand culture were studied. In the pea genotype KPMR-500, Zn deficiency decreased dry matter yield, tissue Zn concentration, and antioxidant enzyme activities istronger than in the genotype IPFD-99-13. Genotype IPFD-99-13 developed more efficient antioxidant system to scavenge ROS than genotype KPMR-500. Zinc deficiency produced oxidative damage to pea genotypes due to enhanced accumulation of TBARS and H2O2 and decreased activities of antioxidant enzymes (Cu/Zn superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and ascorbate peroxidase (APX)). In the leaves of IPFD-99-13 genotype, the higher activity of ROS-scavenging enzyme, e.g., SOD, CAT, POD, and glutathione reductase, and antioxidants, such as ascorbate and non-protein thiols, led to the lower accumulation of H2O2 and lipid peroxides. These results suggest that, by maintaining an efficient antioxidant defense system, the IPFD-99-13 genotype shows a lower sensivity to Zn deficiency than the KPMR-500 genotype.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

APX:

ascorbate peroxidase

CA:

carbonic anhydrase

Car:

carotenoids

CAT:

catalase

Chl:

chlorophyll

Cu/Zn SOD:

copper/zinc superoxide dismutase

DHAR:

dehydroascorbate reductase

GR:

glutathione reductase

NPT:

non-protein thiols

POD:

peroxidase

TBARS:

thiobarbituric acid-reactive substances

References

  1. Singh, B., Kumar, S., Natesan, A., Singh, B.K., and Usha, K., Improving Zinc Efficiency of Cereals under Zinc Deficiency, Curr. Sci., 2005, vol. 88, pp. 36–44.

    CAS  Google Scholar 

  2. Rengel, Z., Genotypic Differences in Micronutrient Use Efficiency in Crops, Commun. Soil Sci. Plant Anal., 2001, vol. 32, pp. 1163–1186.

    Article  CAS  Google Scholar 

  3. Cakmak, I., Ozturk, L., Eker, S., Torun, B., Kalfa, H.I., and Yilamaz, A., Concentration of Zinc and Activity of Copper/Zinc-Superoxide Dismutase in Leaves of Rye and Wheat Cultivars Differing in Sensitivity to Zinc Deficiency, J. Plant Physiol., 1997, vol. 151, pp. 91–95.

    Article  CAS  Google Scholar 

  4. Hacisalihoglu, G., Hart, J.J., Wang, Y.H., Cakmak, I., and Kochain, L.V., Zinc Efficiency Is Correlated with Enhanced Expression and Activity of Cu/Zn Superoxide Dismutase and Carbonic Anhydrase in Wheat, Plant Physiol., 2003, vol. 131, pp. 595–602.

    Article  PubMed  CAS  Google Scholar 

  5. Ellis, D., Lopez-Millan, A.F., and Grusak, M.A., Metal Physiology and Accumulation in a Medicago traunculata Mutant Exhibiting an Elevated Requirement for Zinc, New Phytol., 2003, vol. 158, pp. 207–218.

    Article  CAS  Google Scholar 

  6. Cakmak, I., Possible Roles of Zinc in Protecting Plant Cells from Damage by Reactive Oxygen Species, New Phytol., 2000, vol. 146, pp. 185–205.

    Article  CAS  Google Scholar 

  7. Hacisalihoglu, G., Hart, J.J., Edwards, V.C., and Kochain, L.V., The Role of Shoot Localized Process in the Mechanism of Zn Efficiency in Common Bean, Planta, 2004, vol. 218, pp. 704–711.

    Article  PubMed  CAS  Google Scholar 

  8. Pathak, G.C., Pandey D.K., Gupta, B., and Pandey, N., Zinc Homeostasis Is Critical for Optimized Antioxidative Defense in Faba Bean, Indian J. Plant Physiol., 2009, vol. 14, pp. 60–66.

    CAS  Google Scholar 

  9. Chen, W.R., He, Z.L., Yang, X.E., and Feng, Y., Zinc Efficiency Is Correlated with Root Morphology, Ultra Structure, and Antioxidative Enzymes in Rice, J. Plant Nutr., 2009, vol. 32, pp. 287–305.

    Article  CAS  Google Scholar 

  10. Sharma, C.P., Deficiency Symptoms and Critical Concentration of Micronutrient in Crop Plants, Lucknow: Lucknow Univ. Center, 1996.

    Google Scholar 

  11. Lichtenthaler, H.K., Chlorophylls and Carotenoids: Pigments of Photosynthetic Biomembranes, Methods Enzymol., 1987, vol. 148, pp. 350–382.

    Article  CAS  Google Scholar 

  12. Law, M.Y., Charles, S.A., and Halliwell, B., Glutathione and Ascorbic Acid in Spinach (Spinacia oleracea) Chloroplasts. The Effect of Hydrogen Peroxide and of Paraquat, Biochem. J., 1983, vol. 210, pp. 899–903.

    PubMed  CAS  Google Scholar 

  13. Ellman, G.L., Tissue Sulfydryl Groups, Arch. Biochem. Biophys., 1959, vol. 82, pp. 70–77.

    Article  PubMed  CAS  Google Scholar 

  14. Heath, R.L. and Packer, L., Photoperoxidation in Isolated Chloroplasts. I. Kinetics and Stoichiometry of Fatty Acid Peroxidation, Arch. Biochem. Biophys., 1968, vol. 125, pp. 189–198.

    Article  PubMed  CAS  Google Scholar 

  15. Brennan, T. and Frankel, C., Involvement of Hydrogen Peroxide in the Regulation of Senescence in Pear, Plant Physiol., 1977, vol. 59, pp. 411–416.

    Article  PubMed  CAS  Google Scholar 

  16. Rickli, E.E., Ghazanfor, A.S., Gibbons, B.H., and Edsall, J.T., Carbonic Anhydrase from Human Erythrocytes Preparation and Properties of Two Enzymes, J. Biol. Chem., 1964, vol. 239, pp. 1065–1078.

    PubMed  CAS  Google Scholar 

  17. Bradford, M.M., A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilizing the Principles of Protein-Dye Binding, Anal. Biochem., 1976, vol. 72, pp. 248–254.

    Article  PubMed  CAS  Google Scholar 

  18. Gupta, B., Pathak, G.C., and Pandey, N., Induction of Oxidative Stress and Antioxidant Responses in Vigna mungo by Zinc Stress, Russ. J. Plant Physiol., 2011, vol. 58, pp. 85–91.

    Article  CAS  Google Scholar 

  19. Dong, B., Rengel, Z., and Graham, R.D., Root Morphology of Wheat Genotype Differing in Zn Efficiency, J. Plant Nutr., 1995, vol. 18, pp. 2761–2773.

    Article  CAS  Google Scholar 

  20. Sakal, R., Verma, M.K., Singh, A.P., and Singh, M.K., Relative Tolerance of Some Rice Varieties to Zinc Deficiency in Calcareous Soil, J. Ind. Soc. Soil Sci., 1998, vol. 36, pp. 492–495.

    Google Scholar 

  21. Fischer, E.S., Thimm, O., and Rengel, Z., Zinc Nutrition Influences the CO2 Gas Exchange in Wheat, Photosynthetica, 1997, vol. 33, pp. 505–508.

    CAS  Google Scholar 

  22. Sieferman-Harms, D., The Light Harvesting and Protective Function of Carotenoids in Photosynthetic Membrane, Physiol. Plant., 1987, vol. 69, pp. 561–568.

    Article  Google Scholar 

  23. Sasaki, H., Hirose, T., Watanabe, Y., and Ohsugi, R., Carbonic Anhydrase Activity and CO2-Transfer Resistance in Zn-Deficient Rice Leaves, Plant Physiol., 1998, vol. 118, pp. 929–934.

    Article  PubMed  CAS  Google Scholar 

  24. Rengel, Z., Carbonic Anhydrase Activity in Leaves of Wheat Genotypes Differing in Zn-Efficiency, J. Plant Physiol., 1995, vol. 147, pp. 251–256.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Pandey.

Additional information

Published in Fiziologiya Rastenii, 2012, Vol. 59, No. 2, pp. 225–231.

This text was submitted by the authors in English.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pandey, N., Gupta, B. & Pathak, G.C. Antioxidant responses of pea genotypes to zinc deficiency. Russ J Plant Physiol 59, 198–205 (2012). https://doi.org/10.1134/S1021443712010141

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443712010141

Keywords

Navigation