Skip to main content
Log in

Endonucleases and their involvement in plant apoptosis

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

This review considers modern data about the set, nature, specificity of action, and other properties of plant endonucleases involved in various forms of programmed cell death (PCD) in various plant tissues (organs). Apoptosis is an obligatory component of plant development; plant development is impossible without apoptosis. In dependence on the conditions of plant growth, this process can be induced by various biotic and abiotic factors, including stressors. Endonucleases accomplishing apoptotic degradation of nuclear material in the plant cell play one of the main roles in PCD. Plant endonucleases belong to at least two classes: (1) Ca2+- and Mg2+-dependent and (2) Zn2+-dependent nucleases. The set and activities of endonucleases change with plant age and during apoptosis in a tissue-specific manner. Apoptosis is accompanied by the induction of specific endonucleases hydrolyzing DNA in chromatin with the formation firstly of large domains and then internucleosomal DNA fragments; the products produced are of about 140 nucleotides in length with their subsequent degradation to low-molecular-weight oligonucleotides and mononucleotides. About 30 enzymes are involved in apoptotic DNA degradation. Histone H1 modulates endonuclease activity; separate (sub)fractions of this nuclear protein can stimulate or inhibit corresponding plant endonucleases. In the nucleus and cytoplasm of the plant cells, Ca2+/Mg2+-dependent endonucleases recognizing substrate DNA methylation status were revealed and described for the first time; their action resembles that of bacterial restrictases, which activity is modulated by the donor of methyl groups, S-adenosylmethionine. This indicates that higher eukaryotes (higher plants) might possess the system of restriction-modification to some degree analogous to that of prokaryotes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

dsDNA:

double-stranded DNA

HR:

hypersensitive response

PCD:

programmed cell death

RM-systems:

systems of restriction-modification

SAM:

S-adenosylmethionine

ssDNA:

single-stranded DNA

SSP-nucleases:

nucleases digesting predominantly ssDNA

TE:

tracheal elements

References

  1. Kerr, J.F.R., Wyllie, A.H., and Currie, A.R., Apoptosis: A Basic Biological Phenomenon with Wide-Ranging Implications in Tissue Kinetics, Br. J. Cancer., 1972, vol. 26, pp. 239–257.

    PubMed  CAS  Google Scholar 

  2. Wyllie, A.H., Glucocorticoid-Induced Thymocyte Apoptosis Is Associated with Endogenous Endonuclease Activation, Nature, 1980, vol. 284, pp. 555–556.

    Article  PubMed  CAS  Google Scholar 

  3. Williamson, R., Properties of Rapidly Labelled Deoxyribonucleic Acid Fragments Isolated from the Cytoplasm of Primary Cultures of Embryonic Mouse Liver Cells, J. Mol. Biol., 1970, vol. 51, pp. 157–168.

    Article  PubMed  CAS  Google Scholar 

  4. Widlak, G.P. and Garrard, W.T., Discovery, Regulation, and Action of the Major Apoptotic Nucleases DFF40/CAD and Endonuclease, J. Cell Biochem., 2005, vol. 94, pp. 1078–1087.

    Article  PubMed  CAS  Google Scholar 

  5. Samejima, K. and Earnshaw, W.C., Trashing the Genome: The Role of Nucleases during Apoptosis, Mol. Cell Biol., 2005, vol. 6, pp. 677–688.

    CAS  Google Scholar 

  6. Sugiyama, M., Ito, J., Aoyagi, S., and Fukuda, H., Endonucleases, Plant Mol. Biol., 2000, vol. 44, pp. 387–397.

    Article  PubMed  CAS  Google Scholar 

  7. Rogers, H.J., Cell Death and Organ Development in Plants, Curr. Top. Dev. Biol., 2005, vol. 71, pp. 225–261.

    Article  PubMed  CAS  Google Scholar 

  8. Gunawardena, A.H., Programmed Cell Death and Tissue Remodeling in Plants, J. Exp. Bot., 2008, vol. 59, pp. 445–451.

    Article  PubMed  CAS  Google Scholar 

  9. Papini, A., Mosti, S., and Brighigna, L., Programmed-Cell-Death Events during Tapetum Development of Angiosperms, Protoplasma, 1999, vol. 207, pp. 213–221.

    Article  Google Scholar 

  10. Vischi, M. and Marchetti, S., Strong Extracellular Nuclease Activity Displayed by Barley (Hordeum vulgare L.) Uninucleate Microspores, Theor. Appl. Genet., 1997, vol. 95, pp. 185–190.

    Article  CAS  Google Scholar 

  11. Marchetti, S., Zaina, G., Chiaba, C., Pappalardo, C., and Pitotti, A., Isolation and Characterization of an Endonuclease Synthesized by Barley (Hordeum vulgare L.) Uninucleate Microspores, Planta, 2001, vol. 213, pp. 199–206.

    Article  PubMed  CAS  Google Scholar 

  12. Zaina, G., Morassutti, C., de Amicis, F., Fogher, C., and Marchetti, S., Endonuclease Genes Up-Regulated in Tissues Undergoing Programmed Cell Death Are Expressed during Male Gametogenesis in Barley, Gene, 2003, vol. 15, pp. 43–50.

    Article  CAS  Google Scholar 

  13. Coimbra, S., Torrao, L., and Abreu, I., Programmed Cell Death Induces Male Sterility in Actinidia deliciosa Female Flowers, Plant Physiol. Biochem., 2004, vol. 42, pp. 537–541.

    Article  PubMed  CAS  Google Scholar 

  14. Schwartz, B.W., Vernon, D.A., and Meinke, D.W., Development of the Suspensor: Differentiation, Communication, and Programmed Cell Death during Plant Embryogenesis, Cellular and Molecular Biology of Plant Seed Development, Vasil, B., Ed., Dordrecht: Kluwer, 1997, pp. 53–72.

    Google Scholar 

  15. Van Doorn, W.G. and Woltering, E.J., Many Ways to Exit? Cell Death Categories in Plant, Trends Plant Sci., 2005, vol. 10, pp. 117–122.

    PubMed  Google Scholar 

  16. Lombardi, L., Ceccarelli, N., Picciarelli, P., and Lorenzi, R., DNA Degradation during Programmed Cell Death in Phaseolus coccineus Suspensor, Plant Physiol. Biochem., 2007, vol. 45, pp. 221–227.

    Article  PubMed  CAS  Google Scholar 

  17. Lombardi, L., Ceccarelli, N., Picciarelli, P., and Lorenzi, R., Caspase-Like Proteases Involvement in Programmed Cell Death of Phaseolus coccineus Suspensor, Plant Sci., 2007, vol. 172, pp. 573–578.

    Article  CAS  Google Scholar 

  18. Dominguez, F., Moreno, J., and Cejudo, F.J., The Nucellus Degeneration by a Process of Programmed Cell Death during the Early Stages of Wheat Grain Development, Planta, 2001, vol. 213, pp. 352–360.

    Article  PubMed  CAS  Google Scholar 

  19. Greenwood, J.S., Helm, M., and Gietl, C., Ricinosomes and Endosperm Transfer Cell Structure in Programmed Cell Death of the Nucellus during Ricinus Seed Development, Proc. Natl. Acad. Sci. USA, 2005, vol. 102, pp. 2238–2243.

    Article  PubMed  CAS  Google Scholar 

  20. Lombardi, L., Casani, S., Ceccarelli, N., Galleschi, L., Picciarelli, P., and Lorenzi, R., Programmed Cell Death of the Nucellus during Seed Development Is Associated with Activation of Caspase-Like Proteases, J. Exp. Bot., 2007, vol. 58, pp. 2949–2958.

    Article  PubMed  CAS  Google Scholar 

  21. Dominguez, F. and Cejudo, F.J., Identification of a Nuclear-Localized Nuclease from Wheat Cells Undergoing Programmed Cell Death That Is Able to Trigger DNA Fragmentation and Apoptotic Morphology on Nuclei from Human Cells, Biochem. J., 2006, vol. 397, pp. 529–536.

    Article  PubMed  CAS  Google Scholar 

  22. Crawford, B.C., Ditta, G., and Yanofsky, M.F., The NTT Gene Is Required for Transmitting-Tract Development in Carpels of Arabidopsis thaliana, Curr. Biol., 2007, vol. 17, pp. 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  23. Bosch, M. and Franklin-Tong, V.E., Self-Incompatibility in Papaver: Signalling to Trigger PCD in Incompatible Pollen, J. Exp. Bot., 2008, vol. 59, pp. 481–490.

    Article  PubMed  CAS  Google Scholar 

  24. Young, T.E. and Gallie, D.R., Programmed Cell Death during Endosperm Development, Plant Mol. Biol., 2000, vol. 44, pp. 283–301.

    Article  PubMed  CAS  Google Scholar 

  25. Li, R., Lan, S.Y., and Xu, Z.X., Programmed Cell Death in Wheat during Starchy Endosperm Development, Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao, 2004, vol. 30, pp. 183–188.

    PubMed  Google Scholar 

  26. Lan, S.Y., Zhong, F.X., Yang, Z.M., Jin, D.M., and Xu, Z.X., The Starchy Endosperm Denucleation by a Process of Programmed Cell Death during Rice Grain Development, Shi Yan Sheng Wu Xue Bao, 2004, vol. 37, pp. 34–44.

    PubMed  Google Scholar 

  27. Fath, A., Bethke, P., Lonsdale, J., Meza-Romero, R., and Jones, R., Programmed Cell Death in Cereal Aleurone, Plant Mol. Biol., 2000, vol. 44, pp. 255–266.

    Article  PubMed  CAS  Google Scholar 

  28. Young, T.E., Callie, D.R., and de Mason, D.A., Ethylene-Mediated Programmed Cell Death during Maize Endosperm Development of Wild-Type and srunken2 Genotypes, Plant Physiol., 1997, vol. 115, pp. 737–751.

    PubMed  CAS  Google Scholar 

  29. Brown, P.H. and Ho, T.H., Biochemical Properties and Hormonal Regulation of Barley Nuclease, Eur. J. Biochem., 1987, vol. 168, pp. 357–364.

    Article  PubMed  CAS  Google Scholar 

  30. Aoyagi, S., Sugiyama, M., and Fukuda, H., BEN1 and ZEN1 cDNAs Encoding S1-Type DNases That Are Associated with Programmed Cell Death in Plants, FEBS Lett., 1998, vol. 429, pp. 134–138.

    Article  PubMed  CAS  Google Scholar 

  31. Fath, A., Bethke, P.C., and Jones, R.L., Barley Aleurone Cell Death Is Not Apoptotic: Characterization of Nuclease Activities and DNA Degradation, Plant J., 1999, vol. 20, pp. 305–315.

    Article  CAS  Google Scholar 

  32. Wang, M., Oppedijk, B.J., Caspers, M.P.M., Lamers, G.E.M., Boot, M.J., Geerlings, D.N.G., Bakhuizen, B., Meijer, A.H., and van Duijn, B., Spatial and Temporal Regulation of DNA Fragmentation in the Aleurone of Germinating Barley, J. Exp. Bot., 1998, vol. 49, pp. 1293–1301.

    Article  CAS  Google Scholar 

  33. Dominguez, F., Moreno, J., and Cejudo, F.J., A Gibberellin-Induced Nuclease Is Localized in the Nucleus of Wheat Aleurone Cell Undergoing Programmed Cell Death, J. Biol. Chem., 2004, vol. 19, pp. 11 530–11 536.

    Google Scholar 

  34. He, X. and Kermode, A.R., Nuclease Activities and DNA Fragmentation during Programmed Cell Death of Megagametophyte Cell of White Spruce (Picea glauca) Seeds, Plant Mol. Biol., 2003, vol. 51, pp. 509–521.

    Article  PubMed  CAS  Google Scholar 

  35. Fukuda, H., Programmed Cell Death during Vascular System Formation, Cell Death Diff., 1997, vol. 4, pp. 684–688.

    Article  CAS  Google Scholar 

  36. Turner, S., Gallois, P., and Brown, D., Tracheary Element Differentiation, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 407–433.

    Article  PubMed  CAS  Google Scholar 

  37. Thelen, M.P. and Northcote, D.H., Identification and Purification of a Nuclease from Zinnia elegans L.: A Potential Molecular Marker for Xylogenesis, Planta, 1989, vol. 179, pp. 181–195.

    Article  CAS  Google Scholar 

  38. Ito, J. and Fukuda, H., ZEN1 Is a Key Enzyme in the Degradation of Nuclear DNA during Programmed Cell Death of Tracheary Elements, Plant Cell, 2002, vol. 14, pp. 3201–3211.

    Article  PubMed  CAS  Google Scholar 

  39. Gunawardena, A.H., Sault, K., Donnelly, P., Greenwood, J.S., and Dengler, N.G., Programmed Cell Death and Leaf Morphogenesis in Monstera obliqua (Araceae), Planta, 2005, vol. 221, pp. 607–618.

    Article  PubMed  CAS  Google Scholar 

  40. Lim, P.O., Kim, H.J., and Nam, H.G., Leaf Senescence, Annu. Rev. Plant Biol., 2007, vol. 58, pp. 115–136.

    Article  PubMed  CAS  Google Scholar 

  41. Hopkins, M., Taylor, C., Lin, Z., Ma, F., McNamara, L., Wang, T.-W., and Thompson, J.S., Regulation and Execution of Molecular Disassembly and Catabolism during Senescence, New Phytol., 2007, vol. 175, pp. 201–214.

    Article  PubMed  CAS  Google Scholar 

  42. Wyen, N.V., Erdei, S., and Farkas, G.L., Isolation from Avena Leaf Tissues of a Nuclease with the Same Type of Specificity towards RNA and DNA. Accumulation of the Enzyme during Leaf Senescence, Biochim. Biophys. Acta, 1971, vol. 232, pp. 472–483.

    PubMed  CAS  Google Scholar 

  43. BeMiller, J.N., Liu, T.U.Y.S., Liu, C.R., and Pappelis, A.J., Relationship of Nuclease Activity and Synthesis to Senescence of Corn (Zea mays L.) Stalk Pith, Cob Parenchyma and First Developed Leaf Tissues, Mech. Ageing Dev., 1976, vol. 5, pp. 427–436.

    Article  PubMed  CAS  Google Scholar 

  44. Blank, A. and McKeon, T.A., Single-Strand-Preferring Nuclease Activity in Wheat Leaves Is Increased in Senescence and Is Negatively Photoregulated, Proc. Natl. Acad. Sci. USA, 1989, vol. 86, pp. 3169–3173.

    Article  PubMed  CAS  Google Scholar 

  45. Blank, A. and McKeon, T.A., Expression of Three RNases during Natural and Dark-Induced Senescence of Wheat Leaves, Plant Physiol., 1991, vol. 97, pp. 1409–1413.

    Article  PubMed  CAS  Google Scholar 

  46. Blank, A. and McKeon, T.A., Three RNases in Senescent and Nonsenescent Wheat Leaves, Plant Physiol., 1991, vol. 97, pp. 1402–1408.

    Article  PubMed  CAS  Google Scholar 

  47. Wood, M., Power, J.B., Davey, M.R., Lowe, K.C., and Mulligan, B.J., Factors Affecting Single Strand-Preferring Nuclease Activity during Leaf Aging and Dark-Induced Senescence in Barley (Hordeum vulgare L.), Plant Sci., 1998, vol. 131, pp. 149–159.

    Article  CAS  Google Scholar 

  48. Kawai, M. and Uchimiya, Y., Coleoptile Senescence in Rice (Oryza sativa L.), Ann. Bot., 2000, vol. 86, pp. 405–414.

    Article  CAS  Google Scholar 

  49. Cao, J., Jiang, F., and Sodmergen, Cui, K., Time-Course of Programmed Cell Death during Leaf Senescence in Eucommia ulmoides, J. Plant Res., 2003, vol. 116, pp. 7–12.

    PubMed  Google Scholar 

  50. Aleksandrushkina, N.I., Kof, E.M., Seredina, A.V., Borzov, A.A., and Vanyushin, B.F., Degradation of DNA and Endonuclease Activity Associated with Senescence in the Leaves of Pea of Normal and Aphyllous Genotypes, Russ. J. Plant Physiol., 2008, vol. 55, pp. 23–32.

    CAS  Google Scholar 

  51. Aleksandrushkina, N.I., Seredina, A.V., and Vanyushin, B.F., Endonuclease Activities in the Coleoptile and the First Leaf of Developing Etiolated Wheat Seedlings, Russ. J. Plant Physiol., 2009, vol. 56, pp. 154–163.

    Article  CAS  Google Scholar 

  52. Lers, A., Lomaniec, E., Burd, S., and Khalchitski, A., The Characterization of LeNUC1, a Nuclease Associated with Leaf Senescence of Tomato, Physiol. Plant., 2001, vol. 112, pp. 176–182.

    Article  PubMed  CAS  Google Scholar 

  53. Fedoreyeva, L.I., Sobolev, D.E., and Vanyushin, B.F., Wheat Endonuclease WEN1 Dependent on S-Adenosyl-L-Methionine and Sensitive to DNA Methylation Status, Epigenetics, 2007, vol. 2, pp. 50–53.

    PubMed  Google Scholar 

  54. Fedoreeva, L.I., Sobolev, D.E., and Vanyushin, B.F., S-Adenosyl-L-Methionine-Dependent and Sensitive to DNA Methylation Status Endonuclease WEN1 from Wheat Coleoptiles, Biokhimiya, 2008, vol. 73, pp. 1243–1251.

    Google Scholar 

  55. Fedoreeva, L.I., Smirnova, T.A., Kolomiitseva, G.Ya., and Vanyushin, B.F., Histone H1 Modulates DNA Hydrolysis by Endonucleases WEN1 and WEN2 from Wheat Coleoptiles, Biokhimiya, 2008, vol. 74, pp. 181–189.

    Google Scholar 

  56. Perez-Amador, M.A., Abler, M.L., de Rocher, E.J., Thompson, D.M., van Hoof, A., LeBrasseur, N.D., Lers, A., and Green, P.J., Identification of BFN1, a Bifuctional Nuclease Induced during Leaf and Stem Senescence in Arabidopsis, Plant Physiol., 2000, vol. 122, pp. 169–180.

    Article  PubMed  CAS  Google Scholar 

  57. Orzaez, D. and Granell, A., DNA Fragmentation Is Regulated by Ethylene during Petal Senescence in Pisum sativum, Plant J., 1997, vol. 11, pp. 137–144.

    Article  CAS  Google Scholar 

  58. Wagstaff, C., Malcolm, P., Rafiq, A., Leverentz, M., Griffiths, G., Thomas, B., Stead, A., and Rogers, H., Programmed Cell Death (PCD) Processes Begin Extremely Early in Astroemeria Petal Senescence, New Phytol., 2003, vol. 160, pp. 49–59.

    Article  CAS  Google Scholar 

  59. Serafini-Fracassini, D., del Duca, S., Monti, F., Poli, F., Sacchetti, G., Bregoli, A.M., Biondi, S., and della Mea, M., Transglutaminase Activity during Senescence and Programmed Cell Death in the Corolla of Tobacco (Nicotiana tabacum) Flowers, Cell Death Diff., 2002, vol. 9, pp. 309–321.

    Article  CAS  Google Scholar 

  60. Xu, Y. and Hanson, M.R., Programmed Cell Death during Pollination Induced Petal Senescence in Petunia, Plant Physiol., 2000, vol. 122, pp. 1323–1333.

    Article  PubMed  CAS  Google Scholar 

  61. Langston, B.J., Bai, S., and Jones, M.L., Increases in DNA Fragmentation and Induction of a Senescence-Specific Nuclease Are Delayed during Corolla Senescence in Ethylene-Insensitive (etr1-1) Transgenic Petunias, J. Exp. Bot., 2005, vol. 56, pp. 15–23.

    Article  PubMed  CAS  Google Scholar 

  62. Panavas, T., le Vangie, R., Mistler, J., Reid, P.D., and Rubinstein, B., Activities of Nucleases in Senescing Daylily Petals, Plant Physiol. Biochem., 2000, vol. 38, pp. 837–843.

    Article  CAS  Google Scholar 

  63. Azad, K., Ishikawa, T., Ishikawa, T., Sawa, Y., and Shibata, H., Intracellular Energy Depletion Triggers Programmed Cell Death during Petal Senescence in Tulip, J. Exp. Bot., 2008, vol. 59, pp. 2085–2095.

    Article  PubMed  CAS  Google Scholar 

  64. Yamada, T., Ichimura, K., and van Doorn, W.G., DNA Degradation and Nuclear Degeneration during Programmed Cell Death in Petals of Antirrhinum, Argyranthemum, and Petunia, J. Exp. Bot., 2006, vol. 57, pp. 3543–3552.

    Article  PubMed  CAS  Google Scholar 

  65. Yamada, T., Takatsu, Y., Kasumi, M., Ichimura, K., and van Doorn, W.G., Nuclear Fragmentation and DNA Degradation during Programmed Cell Death in Petals of Morning Glory (Ipomoea nil), Planta, 2006, vol. 224, pp. 1279–1290.

    Article  PubMed  CAS  Google Scholar 

  66. Yamada, T., Ichimura, K., and van Doorn, W.G., Relationship between Petal Abscission and Programmed Cell Death in Prunus yedoensis and Delphinium belladonna, Planta, 2007, vol. 226, pp. 1195–1205.

    Article  PubMed  CAS  Google Scholar 

  67. McCabe, P.F. and Leaver, C.J., Programmed Cell Death in Cell Cultures, Plant Mol. Biol., 2000, vol. 44, pp. 359–368.

    Article  PubMed  CAS  Google Scholar 

  68. Reape, T.J., Molony, E.M., and McCabe, P.F., Programmed Cell Death in Plants: Distinguishing between Different Modes, J. Exp. Bot., 2008, vol. 59, pp. 435–444.

    Article  PubMed  CAS  Google Scholar 

  69. Houot, V., Etienne, P., Petitot, A.-S., Barbier, S., Blein, J.-P., and Suty, L., Hydrogen Peroxide Induces Programmed Cell Death Features in Cultured Tobacco BY-2 Cells, in a Dose-Dependent Manner, J. Exp. Bot., 2001, vol. 52, pp. 1721–1730.

    Article  PubMed  CAS  Google Scholar 

  70. De Pinto, M.C., Paradiso, A., Leonetti, P., de Gara, L., Hydrogen Peroxide, Nitric Oxide and Cytosolic Ascorbate Peroxidase at the Crossroad between Defence and Cell Death, Plant J., 2006, vol. 48, pp. 784–795.

    Article  PubMed  CAS  Google Scholar 

  71. Xu, C.J., Chen, K.S., and Ferguson, I.B., Programmed Cell Death Features in Apple Suspension Cells under Low Oxygen Culture, J. Zhejiang Univ. Sci., 2004, vol. 5, pp. 137–143.

    Article  PubMed  Google Scholar 

  72. Singh, V.K., Wood, S.M., Knowles, V.L., and Plaxton, W.C., Phosphate Accelerates Programmed Cell Death in Phosphate-Starved Oilseed Rape (Brassica napus) Suspension Cell Cultures, Planta, 2003, vol. 218, pp. 233–239.

    Article  PubMed  CAS  Google Scholar 

  73. Xia, Q.Z., Zhang, X.L., Nie, Y.C., Guo, X.P., and Zhu, L.F., Spontaneous and Induced Programmed Cell Death in Suspension Cell Cultures of Cotton (Gossypium hirsutum L.), Shi Yan Sheng Wu Xue Bao, 2005, vol. 38, pp. 303–308.

    PubMed  CAS  Google Scholar 

  74. Hosseini, R. and Mulligan, B.J., Application of Rice (Oryza sativa L.) Suspension Culture in Studying Senescence In Vitro: 1. Single Strand Preferring Nuclease Activity, Electron. J. Biotechnol., 2007, vol. 5, pp. 43–54.

    Google Scholar 

  75. Ge, Z.Q., Yang, S., and Yuan, Y.J., Ce(4+) Induced Down-Regulation of ERK-Like MARK and Activation of Nucleases during the Apoptosis of Cultured Taxus cuspidate Cells, J. Inorg. Biochem., 2006, vol. 100, pp. 167–177.

    Article  PubMed  CAS  Google Scholar 

  76. Mittler, R. and Lam, E., Identification, Characterization, and Purification of a Tobacco Endonuclease Activity Induced upon Hypersensitive Response Cell Death, Plant Cell, 1995, vol. 7, pp. 1951–1962.

    Article  PubMed  CAS  Google Scholar 

  77. Mittler, R., Simon, L., and Lam, E., Pathogen-Induced Programmed Cell Death in Tobacco, J. Cell Sci., 1997, vol. 110, pp. 1333–1344.

    PubMed  CAS  Google Scholar 

  78. Oleson, A.E., Janski, A.M., and Clark, E.T., An Extracellular Nuclease from Suspension Cultures of Tobacco, Biochim. Biophys. Acta, 1974, vol. 366, pp. 89–100.

    PubMed  CAS  Google Scholar 

  79. Tada, Y., Hata, S., Takata, Y., Nakayashiki, H., Tosa, Y., and Mayama, S., Induction and Signaling of an Apoptotic Response Typified by DNA Laddering in the Defense Response of Oats to Infection and Elicitors, Mol. Plant-Microbe Interact., 2001, vol. 14, pp. 477–486.

    Article  PubMed  CAS  Google Scholar 

  80. Kusaka, K., Tada, Y., Shigemi, T., Sakamoto, M., Nakayashiki, H., Tosa, Y., and Mayama, S., Coordinate Involvement of Cysteine Protease and Nuclease in the Executive Phase of Plant Apoptosis, FEBS Lett., 2004, vol. 578, pp. 363–367.

    Article  PubMed  CAS  Google Scholar 

  81. Zhivotovski, B., Gahm, A., and Orrenius, S., Two Different Proteases Are Involved in the Proteolysis of Lamin during Apoptosis, Biochem. Biophys. Res. Commun., 1997, vol. 233, pp. 96–101.

    Article  Google Scholar 

  82. Muramoto, Y., Watanabe, A., and Takabe, N.T., Enhanced Expression of a Nuclease Gene in Leaves of Barley Plants under Salt Stress, Gene, 1999, vol. 234, pp. 315–321.

    Article  PubMed  CAS  Google Scholar 

  83. Jiang, A.L., Cheng, Y., Li, J., and Zhang, W., A Zinc-Dependent Nuclear Endonuclease Is Responsible for DNA Laddering during Salt-Induced Programmed Cell Death in Root Tip Cells of Rice, J. Plant Physiol., 2008, vol. 165, pp. 1134–1141.

    Article  PubMed  CAS  Google Scholar 

  84. Evans, D.E., Aerenchyma Formation, New Phytol., 2004, vol. 161, pp. 35–49.

    Article  Google Scholar 

  85. Muhlenbock, P., Plaszczyca, M., Plaszczyca, M., Mellerowicz, E., and Karpinskia, S., Lysigenous Aerenchyma Formation in Arabidopsis Is Controlled by LESION SIMULATING DISEASE1, Plant Cell, 2007, vol. 19, pp. 3819–3830.

    Article  PubMed  CAS  Google Scholar 

  86. Gunawardena, A.H.L.A.N., Pearce, D.M., Jackson, M.B., Hawes, C.R., and Evans, D.E., Characterization of Programmed Cell Death during Aerenchyma Formation Induced by Ethylene or Hypoxia in Roots of Maize (Zea mays L.), Planta, 2001, vol. 212, pp. 205–214.

    Article  PubMed  CAS  Google Scholar 

  87. Gladish, D.K., Xu, J., and Niki, T., Apoptosis-Like Programmed Cell Death Occurs in Procambium and Ground Meristem of Pea (Pisum sativum) Root Tips Exposed to Sudden Flooding, Ann. Bot., 2006, vol. 97, pp. 895–902.

    Article  PubMed  CAS  Google Scholar 

  88. Inada, N., Sakai, A., Kuroiwa, H., and Kuroiwa, T., Three-Dimensional Progression of Programmed Cell Death in Rice Coleoptile, Int. Rev. Cytol., 2002, vol. 218, pp. 221–258.

    Article  PubMed  Google Scholar 

  89. Koukalova, B., Kovarik, A., Fajkus, J., and Siroky, J., Chromatin Fragmentation Associated with Apoptotic Changes in Tobacco Cells Exposed to Cold Stress, FEBS Lett., 1997, vol. 414, pp. 289–292.

    Article  PubMed  CAS  Google Scholar 

  90. Booker, L.F., Influence of Ozone on Ribonuclease Activity in Wheat (Triticum aestivum) Leaves, Physiol. Plant., 2004, vol. 120, pp. 249–255.

    Article  PubMed  CAS  Google Scholar 

  91. Shaver, J.M., Oldenburg, D.J., and Bendich, A.J., Changes in Chloroplast DNA during Development in Tobacco, Medicago truncatula, Pea, and Maize, Planta, 2006, vol. 224, pp. 72–82.

    Article  PubMed  CAS  Google Scholar 

  92. Przykorska, A., Solecka, K., Olszak, K., Keith, G., Nawrot, B., and Kuligowska, E., Wheat (Triticum vulgare) Chloroplast Nuclease ChSI Exhibits 5′ Flap Structure-Specific Endonuclease Activity, Biochemistry, 2004, vol. 43, pp. 11 283–11 294.

    Article  CAS  Google Scholar 

  93. Li, L., Luo, X., and Wang, X., Endonuclease G Is an Apoptotic DNase When Released from Mitochondria, Nature, 2001, vol. 412, pp. 95–99.

    Article  PubMed  CAS  Google Scholar 

  94. Parrish, J., Li, L., Klotz, K., Ledwich, D., Wang, X., and Xue, D., Mitochondrial Endonuclease G Is Important for Apoptosis in C. Elegans, Nature, 2001, vol. 412, pp. 90–94.

    Article  PubMed  CAS  Google Scholar 

  95. Balk, J., Chew, S.K., Leaver, C.J., and McCabe, P.F., The Intermembrane Space of Plant Mitochondria Contains a DNase Activity That May Be Involved in Programmed Cell Death, Plant J., 2003, vol. 34, pp. 573–583.

    Article  PubMed  CAS  Google Scholar 

  96. Morimoto, S., Tanaka, Y., Sasaki, K., Tanaka, H., Fukamizu, T., Shoyama, Y., Shoyama, Y., and Taura, F., Identification and Characterization of Cannabinoids That Induce Cell Death through Mitochondrial Permeability Transition in Cannabis Leaf Cells, J. Biol. Chem., 2007, vol. 282, pp. 20 739–20 751.

    CAS  Google Scholar 

  97. Yursanis, T., Symeonidis, L., Kalemi, T., Moustaka, H., and Yupsani, A., Purification, Properties and Specificity of an Endonuclease from Agropyron elongatum Seedling, Plant Physiol. Biochem., 2004, vol. 42, pp. 795–802.

    Article  CAS  Google Scholar 

  98. Gavrieli, Y., Sherman, Y., and Ben-Sasson, S.A., Identification of Programmed Cell Death In Situ via Specific Labeling of Nuclear DNA Fragmentation, J. Cell Biol., 1992, vol. 119, pp. 493–501.

    Article  PubMed  CAS  Google Scholar 

  99. Fraser, M.J. and Low, R.L., Fungal and Mitochondrial Nucleases, Nucleases, Linn, S.M., Lloyd, R.S., and Roberts, R.J., Eds., Cold Spring Harbor: Cold Spring Harbor Lab., 1993, pp. 171–207.

    Google Scholar 

  100. Desai, N.A. and Shankar, V., Single-Strand-Specific Nucleases, FEMS Microbiol. Rev., 2003, vol. 26, pp. 457–491.

    Article  PubMed  CAS  Google Scholar 

  101. Panavas, T., Pikula, A., Reid, P.D., Rubinstein, B., and Walker, E.L., Identification of Senescence-Associated Genes from Daylily Petals, Plant Mol. Biol., 1999, vol. 40, pp. 237–248.

    Article  PubMed  CAS  Google Scholar 

  102. Yang, B., Wen, X., Kodali, N.S., Oleykowski, C.A., Miller, C.G., Kulinski, J., Besack, D., Yeung, J.A., Kowalski, D., and Yeung, A.T., Purification, Cloning, and Characterization of the CEL I Nuclease, Biochemistry, 2000, vol. 39, pp. 3533–3541.

    Article  PubMed  CAS  Google Scholar 

  103. Larsen, K., Molecular Cloning and Characterization of a cDNA Encoding Endonuclease from Potato (Solanum tuberosum), J. Plant Physiol., 2005, vol. 162, pp. 1263–1269.

    Article  PubMed  CAS  Google Scholar 

  104. Van der Graaff, E., Schwacke, R., Schneider, A., Desimone, M., Flugge, U.I., and Kunze, R., Transcription Analysis of Arabidopsis Membrane Transporters and Hormone Pathways during Developmental and Induced Leaf Senescence, Plant Physiol., 2006, vol. 141, pp. 776–792.

    Article  PubMed  CAS  Google Scholar 

  105. Gregersen, P.L. and Holm, P.B., Transcriptome Analysis of Senescence in the Flag Leaf of Wheat (Triticum aestivum L.), Plant Biotechnol. J., 2007, vol. 5, pp. 192–206.

    Article  PubMed  CAS  Google Scholar 

  106. Samejima, V. and Earnshaw, W.C., Trashing the Genome: The Role of Nucleases during Apoptosis, Nat. Rev. Mol. Cell Biol., 2005, vol. 6, pp. 677–688.

    Article  PubMed  CAS  Google Scholar 

  107. Qiu, J., Yoon, J.H., and Shen, B., Search for Apoptotic Nucleases in Yeast: Role of Tat-D Nuclease in Apoptotic DNA Degradation, J. Biol. Chem., 2005, vol. 280, pp. 15 370–15 379.

    CAS  Google Scholar 

  108. Parrish, J.Z. and Xue, D., Functional Genomic Analysis of Apoptotic DNA Degradation in C. Elegans, Mol. Cell, 2003, vol. 11, pp. 987–996.

    Article  PubMed  CAS  Google Scholar 

  109. Yang, B., Wen, X., Kodali, N.S., Oleykowski, C.A., Miller, C.G., Kulinski, J., Besack, D., Yeung, J.A., Kowalski, D., and Yeung, A.T., Purification, Cloning, and Characterization of the CEL I Nuclease, Biochemistry, 2000, vol. 39, pp. 3533–3541.

    Article  PubMed  CAS  Google Scholar 

  110. Pimkin, M., Caretti, E., Canutescu, A., Yeung, J.B., Cohn, H., Chen, Y., Oleykowski, C., Bellacosa, A., and Yeung, A.T., Recombinant Nucleases CEL I from Celery and SP I from Spinach for Mutation Detection, BMC Biotechnol., 2007, vol. 1, pp. 7–29.

    Google Scholar 

  111. Kimura, S., Furukawa, T., Kasai, N., Mori, Y., Kitamoto, H.K., Sugawara, F., Hashimoto, J., and Sakaguchi, K., Functional Characterization of Two Flap Endonuclease-1 Homologues in Rice, Gene, 2003, vol. 314, pp. 63–71.

    Article  PubMed  CAS  Google Scholar 

  112. Moritoh, S., Miki, D., Akiyama, M., Kawahara, M., Izawa, T., Maki, H., and Shimamoto, K., RNA-Mediated Silencing of OsGEN-L (OsGEN-Like), a New Member of the RAD2/XPG Nuclease Family, Causes Male Sterility by Defect of Microspore Development in Rice, Plant Cell Physiol., 2005, vol. 46, pp. 699–715.

    Article  PubMed  CAS  Google Scholar 

  113. Bonneau, L., Ge, Y., Drury, G.E., and Gallois, P., What Happened to Plant Caspases? J. Exp. Bot., 2008, vol. 59, pp. 491–499.

    Article  PubMed  CAS  Google Scholar 

  114. Della Mea, M., Serafini-Fracassini, D., and del Duca, S., Programmed Cell Death: Similarities and Differences in Animals and Plants. A Flower Paradigm, Amino Acids, 2007, vol. 33, pp. 395–404.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. F. Vanyushin.

Additional information

Original Russian Text © N.I. Aleksandrushkina, B.F. Vanyushin, 2009, published in Fiziologiya Rastenii, 2009, vol. 56, No. 3, pp. 323–339.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aleksandrushkina, N.I., Vanyushin, B.F. Endonucleases and their involvement in plant apoptosis. Russ J Plant Physiol 56, 291–305 (2009). https://doi.org/10.1134/S1021443709030017

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443709030017

Key words

Navigation