We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Skip to main content
Log in

Signaling role of action potential in higher plants

  • Lectures
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The signaling role of action potential (AP) in higher plants is considered. The principles underlying realization of this role and the significance of AP-induced short-term effector response are discussed. The notion is put forward that the effect of propagating AP on plant cells is similar to nonspecific component of the cell functional response to external stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

AP:

action potential (potentials)

References

  1. Opritov, V.A., Pyatygin, S.S., and Retivin, V.G., Bioelektrogenez u vysshikh rastenii (Bioelectrogenesis in Higher Plants), Moscow: Nauka, 1991.

    Google Scholar 

  2. Sibaoka, T., Rapid Plant Movements Triggered by Action Potentials, Bot. Mag. (Tokyo), 1991, vol. 104, pp. 73–95.

    Article  Google Scholar 

  3. Thain, J.F. and Wildon, D.C., Electrical Signalling in Plants, Membranes: Specialized Functions in Plants, Smallwood, M., Knox, J.R., and Bowles, D.J., Eds., Oxford: BIOS Sci. Publ., 1996, pp. 301–317.

    Google Scholar 

  4. Pyatygin, S.S., Electrogenesis of Plant Cells under Stress Conditions, Usp. Sovrem. Biol., 2003, vol. 123, pp. 552–562.

    Google Scholar 

  5. Davies, E., New Functions for Electrical Signals in Plants, New Phytol., 2004, vol. 161, pp. 607–610.

    Article  Google Scholar 

  6. Wejnar, R., Bewegungen der Pflanzen, Berlin: Urania-Verlag, 1982.

    Google Scholar 

  7. Sinyukhin, A.M. and Britikov, E.A., Action Potentials in the Reproductive System of Plants, Nature, 1967, vol. 215, pp. 1278–1280.

    Article  Google Scholar 

  8. Dukhovnyi, A.I., Elektrofiziologiya opyleniya u vysshikh rastenii (na primere kukuruzy) (Electrophysiology of Pollination in Higher Plants as Exemplified by Maize), Chisinau: Shtiintsa, 1973.

    Google Scholar 

  9. Shimmen, T., Involvement of Receptor Potentials and Action Potentials in Mechanoperception in Plants, Aust. J. Plant Physiol., 2001, vol. 28, pp. 567–576.

    CAS  Google Scholar 

  10. Opritov, V.A., Lobov, S.A., Pyatygin, S.S., and Mysyagin, S.A., Analysis of Possible Involvement of Local Bioelectric Responses in Chilling Perception by Higher Plants Exemplified by Cucurbita pepo, Russ. J. Plant Physiol., 2005, vol. 52, pp. 801–808.

    Article  CAS  Google Scholar 

  11. Pyatygin, S.S. and Opritov, V.A., Effect of Temperature on Action Potential Generation by Excitable Higher Plant Cells, Biofizika, 1990, vol. 35, pp. 444–449.

    Google Scholar 

  12. Pyatygin, S.S., Opritov, V.A., and Khudyakov, V.A., subthreshold Changes in Excitable Membranes of Cucurbita pepo L. Stem Cells during Cooling-Induced Action-Potential Generation, Planta, 1992, vol. 186, pp. 161–165.

    Article  CAS  Google Scholar 

  13. Eschrich, W., Fromm, J., and Evert, R.F., Transmission of Electric Signals in Sieve Tubes of Zucchini Plants, Bot. Acta, 1988, vol. 101, pp. 327–331.

    Google Scholar 

  14. Rhodes, J.D., Thain, J.F., and Wildon, D.C., The Pathway for Systemic Electrical Signal Conduction in the Wounded Tomato Plants, Planta, 1996, vol. 200, pp. 50–57.

    Article  CAS  Google Scholar 

  15. Yost, H., Cellular Physiology, New Jersey: Prentice-Hall, 1972.

    Google Scholar 

  16. Smit, K.Yu.M., Biologiya sensornykh sistem (Biology of Sensor Systems), Moscow: BINOM, Laboratoriya znanii, 2005.

    Google Scholar 

  17. Volkov, A.G. and Haack, R.A., Bioelectrochemical Signals in Potato Plants, Sov. Plant Physiol., 1995, vol. 42, pp. 23–29.

    Google Scholar 

  18. Volkov, A.G. and Haack, R.A., Insect Induced Bioelectrochemical Signals in Potato Plants, Bioelectrochem. Bioenerg., 1995, vol. 35, pp. 55–60.

    Article  Google Scholar 

  19. Fasano, J.M., Massa, G.D., and Gilroy, S., Ionic Signaling in Plant Responses to Gravity and Touch, J. Plant Growth Regul., 2002, vol. 21, pp. 71–88.

    Article  CAS  PubMed  Google Scholar 

  20. Jaffe, M.J., Leopold, A.C., and Staples, R.C., Thigmo Responses in Plants and Fungi, Am. J. Bot., 2002, vol. 89, pp. 375–382.

    Article  Google Scholar 

  21. Pyatygin, S.S., Role of Plasma Membrane in Cold Action Perception in Plant Cells, Biol. Membr. (Moscow), 2004, vol. 21, pp. 442–449.

    CAS  Google Scholar 

  22. Pyatygin, S.S., Rhythmical Electric Activity in Pumpkin Seedlings under Damaging and Moderate Temperature Stimuli, Fermenty, iony i bioelektrogenez u rastenii (Enzymes, Ions, and Bioelectrogenesis in Plants), Anisimov, A.A. and Opritov, V.A., Eds., Gorky: Gork. Gos. Univ., 1982.

    Google Scholar 

  23. Pyatygin, S.S., Vodeneev, V.A., and Opritov, V.A., Depolarization of the Plasma Membrane as a Universal Primary Bioelectric Response of Plant Cells to Various Factors, Usp. Sovrem. Biol., 2006, vol. 126, pp. 493–502.

    Google Scholar 

  24. Pyatygin, S.S. and Opritov, V.A., Effect of Membrane Potential on the Lipid Matrix Phase State in the Plasma Membrane of Intact Plant Cells under Moderate Above-Zero Temperatures, Biofizika, 1993, vol. 38, pp. 175–178.

    CAS  Google Scholar 

  25. Pyatygin, S.S., Vodeneev, V.A., and Opritov, V.A., Coupling of Action Potential Generation and Metabolism in Plant Cells: Current View on the Problem, Usp. Sovrem. Biol., 2005, vol. 125, pp. 520–528.

    CAS  Google Scholar 

  26. Vodeneev, V.A., Opritov, V.A., and Pyatygin, S.S., Reversible Changes of Extracellular pH during Action Potential Generation in a Higher Plant Cucurbita pepo, Russ. J. Plant Physiol., 2006, vol. 53, pp. 481–487.

    Article  CAS  Google Scholar 

  27. Tarchevsky, I.A., Signal’nye sistemy kletok rastenii (Signal Transduction Pathways in Plant Cells), Moscow: Nauka, 2002.

    Google Scholar 

  28. White, J.P. and Broadley, M.R., Calcium in Plants, Ann. Bot., 2003, vol. 92, pp. 487–511.

    Article  CAS  PubMed  Google Scholar 

  29. Plieth, C., Calcium: Just Another Regulator in the Machinery of Life? Ann. Bot., 2005, vol. 96, pp. 1–8.

    Article  CAS  PubMed  Google Scholar 

  30. Opritov, V.A., Retivin, V.G., and Pyatygin, S.S., Nature of Action Potential in Higher Plants, Elektrofiziologicheskie metody v izuchenii funktsional’nogo sostoyaniya rastenii (Electrophysiological Methods for Investigation of Plant Functional Status), Puponin, A.I., Ed., Moscow: Timiryazev. S.-kh. Acad., 1988, pp. 14–22.

    Google Scholar 

  31. Krol, E., Dziubinska, H., and Trebacz, K., Low-Temperature Induced Transmembrane Potential Changes in the Liverwort Conocephalum conicum, Plant Cell Physiol., 2003, vol. 44, pp. 527–533.

    Article  CAS  PubMed  Google Scholar 

  32. Krol, E., Dziubinska, H., Stolarz, M., and Trebacz, K., Effects on Ion Channel Inhibitors on Cold-and Electrically-Induced Action Potentials in Dionaea muscipula, Biol. Plant., 2006, vol. 50, pp. 411–416.

    Article  CAS  Google Scholar 

  33. Wilkinson, S., pH as a Stress Signal, Plant Growth Regul., 1999, vol. 29, pp. 87–99.

    Article  CAS  Google Scholar 

  34. Roos, W., Viehweger, K., Dordschbal, B., Schumann, B., Evers, S., Steighardt, J., and Schwartze, W., Intracellular pH Signals in the Induction of Secondary Pathways — The Case of Eschscholzia californica, J. Plant Physiol., 2006, vol. 163, pp. 369–381.

    Article  CAS  PubMed  Google Scholar 

  35. Fromm, J. and Spanswick, R., Characteristics of Action Potentials in Willow (Salix viminalis L.), J. Exp. Bot., 1993, vol. 44, pp. 1119–1125.

    Article  Google Scholar 

  36. Melekhov, E.I. and Anev, V.N., Reversible K+ Efflux from the Cell as a Defense Response to Adverse Effects, Zh. Obshch. Biol., 1991, vol. 52, pp. 14–26.

    Google Scholar 

  37. Melekhov, E.I. and Anev, V.N., Mechanisms of Cell Defense Responses Coupling with K+ Efflux, Usp. Sovrem. Biol., 1992, vol. 112, pp. 18–28.

    CAS  Google Scholar 

  38. Retivin, V.G., Opritov, V.A., Abramova, N.N., Lobov, S.A., and Fedulina, S.B., ATP Level in the Phloem Exudate of Higher Plant Shoot after Propagation of Electric Responses to the Burning or Cooling, Vestn. Nizhegorod. Univ. im. N.I. Lobachevskogo, Ser. Biol., 1999, no. 1, pp. 124–131.

  39. Tarchevsky, I.A., Metabolizm rastenii pri stresse (Plant Metabolism under Stress), Kazan: Fen, 2001.

    Google Scholar 

  40. Lukatkin, A.S., Kholodovoe povrezhdenie teplolyubivykh rastenii i okislitel’nyi stress (Cold Damage to Heat-Loving Plants and Oxidative Stress), Saransk: Mordovsk. Univ., 2002.

    Google Scholar 

  41. Trebacz, K., Simonis, W., and Schönknecht, G., Cytoplasmic Ca2+, K+, Cl, and NO 3 Activities in the Liverwort Conocephalum conicum L, at Rest and during Action Potential, Plant Physiol., 1994, vol. 106, pp. 1073–1084.

    CAS  PubMed  Google Scholar 

  42. Bulychev, A.A. and Remish, D., Transient Inhibition of the H+-Pump in Anthoceros Plasmalemma after Light Flash of Second Duration, Sov. Plant Physiol., 1991, vol. 38, pp. 499–505.

    CAS  Google Scholar 

  43. Opritov, V.A., Krauz, V.O., and Treushnikov, V.M., The Role of Electric Responses of Excitation in Functional Relations between Shoots and Roots after Seedling Apex Stimulation by External Cues, Sov. Plant Physiol., 1972, vol. 19, pp. 961–967.

    CAS  Google Scholar 

  44. Opritov, V.A., Pyatygin, S.S., and Krauz, V.O., Analysis of the Role of Electric Activity in Higher Plant Cell and Development of Adaptive Syndrome under Cooling, Russ. Plant Physiol., 1993, vol. 40, pp. 619–626.

    Google Scholar 

  45. Opritov, V.A., Kalinin, V.A., and Yarchenkova, I.M., Participation of Free Radicals in the Mechanism of Action Potential Propagation in Cells of Conducting System in Higher Plants, Sov. Plant Physiol., 1974, vol. 21, pp. 545–553.

    Google Scholar 

  46. Dziubinska, H., Trebacz, K., and Zawadzki, T., The Effect of Excitation on the Rate of Respiration in the Liverwort Conocephalum conicum, Physiol. Plant., 1989, vol. 75, pp. 417–423.

    Article  Google Scholar 

  47. Filek, M. and Koscielniak, J., The Effect of Wounding the Roots by High Temperature on the Respiration Rate of the Shoot and Propagation of Electric Signal in Horse Bean Seedlings (Vicia faba L. minor), Plant Sci., 1997, vol. 123, pp. 39–46.

    Article  CAS  Google Scholar 

  48. Fromm, J. and Eschrich, W., Electric Signals Released from Roots of Willow (Salix viminalis L.) Change Transpiration and Photosynthesis, J. Plant Physiol., 1993, vol. 141, pp. 673–680.

    CAS  Google Scholar 

  49. Koziolek, C., Grams, T.E.E., Schreiber, U., Matyssek, R., and Fromm, J., Transient Knockout of Photosynthesis Mediated by Electrical Signals, New Phytol., 2004, vol. 161, pp. 715–722.

    Article  CAS  Google Scholar 

  50. Roberts, K., Potential Awareness of Plants, Nature, 1992, vol. 360, pp. 14–15.

    Article  Google Scholar 

  51. Fisahn, J., Herde, O., Willmitzer, L., and Pena-Cortes, H., Analysis of the Transient Increase in Cytosolic Anthoceros during the Action Potential of Higher Plants with High Temporal Resolution: Requirement of Ca2+ Transients for Induction of Jasmonic Acid Biosynthesis and PIN II Gene Expression, Plant Cell Physiol., 2004, vol. 45, pp. 456–459.

    Article  CAS  PubMed  Google Scholar 

  52. Dziubinska, H., Filek, M., Koscielniak, J., and Trebacz, K., Variation and Action Potentials Evoked by Thermal Stimuli Accompany Enhancement of Ethylene Emission in Distant Non-Stimulated Leaves of Vicia faba minor Seedlings, J. Plant Physiol., 2003, vol. 160, pp. 1203–1210.

    Article  CAS  PubMed  Google Scholar 

  53. Shiina, T. and Tazawa, M., Action Potential in Luffa cylindrica and Its Effects on Elongation Growth, Plant Cell Physiol., 1986, vol. 27, pp. 1081–1089.

    Google Scholar 

  54. Vian, A., Henry-Vian, C., Schantz, R., Ledoigt, G., Frachisse, J.-M., Desbiez, M.-O., and Julien, J.-L., Is Membrane Potential Involved in Calmodulin Gene Expression after External Stimulation in Plants? FEBS Lett., 1996, vol. 380, pp. 93–96.

    Article  CAS  PubMed  Google Scholar 

  55. Bulychev, A.A. and Kamzolkina, N.A., Effect of Action Potential on Photosynthesis and Spatially Distributed H+ Fluxes in Cells and Chloroplasts of Chara corallina, Russ. J. Plant Physiol., 2006, vol. 53, pp. 1–9.

    Article  CAS  Google Scholar 

  56. Veselova, T.V., Veselovskii, V.A., and Chernavskii, D.S., Stress u rastenii (Biofizicheskii podkhod) (Stress in Plants, Biophysical Approach), Moscow: Mosk. Gos. Univ., 1993.

    Google Scholar 

  57. Retivin, V.G., Opritov, V.A., and Fedulina, S.B., Generation of Action Potential Induces Preadaptation of Cucurbita pepo L. Stem Tissues to Freezing Injury, Russ. J. Plant Physiol., 1997, vol. 44, pp. 432–442.

    CAS  Google Scholar 

  58. Retivin, V.G., Opritov, V.A., Lobov, S.A., Tarakanov, S.A., and Khudyakov, V.A., Changes in the Resistance of Photosynthesizing Cotyledon Cells of Pumpkin Seedlings to Cooling and Heating, as Induced by the Stimulation of the Root System with KCl Solution, Russ. J. Plant Physiol., 1999, vol. 46, pp. 689–696.

    CAS  Google Scholar 

  59. Trewavas, A., Green Plants as Intelligent Organisms, Trends Plant Sci., 2005, vol. 10, pp. 413–419.

    Article  CAS  PubMed  Google Scholar 

  60. Pyatygin, S.S., Opritov, V.A., Abramova, N.N., and Vodeneev, V.A., Primary Bioelectric Response of Higher Plant Cells to the Combined Action of Stress Factors, Russ. J. Plant Physiol., 1999, vol. 46, pp. 530–536.

    CAS  Google Scholar 

  61. Akimova, T.V., Balagurova, N.I., and Titov, A.F., Possibility of Heat Hardening “Signal” Transduction in Plants, Sov. Plant Physiol., 1991, vol. 38, pp. 1197–1202.

    Google Scholar 

  62. Filek, M. and Koscielniak, J., The Effect of Chilling Maize Shoots and Roots on the Electric Potential, Composition of Fatty Acids and the ATPase Activity in the Non-Chilled Organs of Seedlings, J. Agric. Crop Sci., 1996, vol. 117, pp. 261–267.

    Article  Google Scholar 

  63. Balagurova, N.I., Akimova, T.V., and Titov, A.F., The Effect of Local Cooling of Cucumber and Wheat Seedlings on Various Kinds of Stress Resistance of Their Leaves and Roots, Russ. J. Plant Physiol., 2001, vol. 48, pp. 95–99.

    Article  CAS  Google Scholar 

  64. Capone, R., Tiwari, B.S., and Levine, A., Rapid Transmission of Oxidative and Nitrosative Stress Signals from Roots to Shoots in Arabidopsis, Plant Physiol. Biochem., 2004, vol. 42, pp. 425–428.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. S. Pyatygin.

Additional information

Original Russian Text © S.S. Pyatygin, V.A. Opritov, V.A. Vodeneev, 2008, published in Fiziologiya Rastenii, 2008, Vol. 55, No. 2, pp. 312–319.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pyatygin, S.S., Opritov, V.A. & Vodeneev, V.A. Signaling role of action potential in higher plants. Russ J Plant Physiol 55, 285–291 (2008). https://doi.org/10.1134/S1021443708020179

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443708020179

Key words

Navigation