Skip to main content
Log in

The role of mesophyll cell tonoplast in determining the route of phloem loading. Thirty years of the studies of phloem loading

  • Reviews
  • Published:
Russian Journal of Plant Physiology Aims and scope Submit manuscript

Abstract

The evidence of light, electronic, and confocal microscopy collected within the 30-year period is reviewed to revise the concept of assimilate loading in phloem. It is the starting point located in mesophyll cells, which determines the route of assimilate export from mesophyll to phloem, rather than its final segment located in the terminal phloem. Plastids, photosynthesis, and the primary pool of photosynthates are localized in the vacuome of mesophyll cells. All chemicals applied to leaf surface are loaded to phloem via apoplast, even in the symplastic plants. It follows that photoassimilates are not loaded via apoplast because they cannot leave mesophyll and not due to the lack of pumps and transporters in the terminal phloem cells. Of two membranes separating vacuome and apoplast, the tonoplast confers the barrier function. The impossibility to overcome this barrier raises the hydrostatic pressure in the vacuome to the level that induces plasmodesma development between the cells. With the loss of tonoplast barrier function for assimilates, the latter leave for apoplast, this process is incompatible with building the vacuolar loading route. Two alternative mechanisms of phloem loading diverge initially because of different barrier functions of tonoplast. The radical change in these functions makes up the crucial advantage of the young group of apoplastic dicot plants (about 20 000 species), whose evolution is associated with expansion of meadow-steppe vegetation 5–7 million years ago. Such change would evolve due to the climate differentiation in the late myocene period, when heat and moisture were lacking at vast territories. A large group of temperate herbs evolved and expanded because of these changes in the assimilate compartmentalization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ER:

endoplasmic reticulum.

References

  1. Pate, J.S. and Gunning, B.E.S., Vascular Transfer Cells in Angiosperm Leaves. A Taxonomic and Morphological Survey, Protoplasma, 1969, vol. 68, pp. 135–156.

    Article  Google Scholar 

  2. Gamalei, Yu.V., Symplastic Relations in Leaf Minor Veins of Fraxinus (Sugar Transport in Leaf), Bot. Zh. (Leningrad), 1974, vol. 59, pp. 980–987.

    Google Scholar 

  3. Geiger, D.B., Phloem Loading, Encyclopedia of Plant Physiology, New Ser., vol. 1, Transport in Plants, I. Phloem Transport, Zimmermann, M.H. and Milburn, J.A., Eds., Berlin: Springer-Verlag, 1975, pp. 395–431.

    Google Scholar 

  4. Eschrich, W. and Heyser, W., Biochemistry of Phloem Constituents, Encyclopedia of Plant Physiology, New Ser., vol. 1, Transport in Plants, I. Phloem Transport, Zimmermann, M.H. and Milburn, J.A., Eds., Berlin: Springer-Verlag, 1975, pp. 101–139.

    Google Scholar 

  5. Kursanov, A.L., Transport assimilyatov v rastenii, Moscow: Nauka, 1976. Translated under the title Assimilate Transport in Plants, Amsterdam: Elsevier, 1984.

    Google Scholar 

  6. Watson, L., Pate, J.S., and Gunning, B.E.S., Vascular Transfer Cells in Leaves of Leguminosae-Papilionoidae, Bot. J. Linn. Soc., 1977, vol. 74, pp. 123–130.

    Google Scholar 

  7. Gamalei, Yu.V. and Pakhomova, M.V., Leaf Minor Veins of Dicotyledons. 1. Structure and Typological Basis, Bot. Zh. (Leningrad), 1983, vol. 68, pp. 287–301.

    Google Scholar 

  8. Gamalei, Yu.V. and Pakhomova, M.V., Leaf Minor Veins of Dicotyledons. 2. Taxonomic Division of Basic Types, Bot. Zh. (Leningrad), 1983, vol. 68, pp. 428–440.

    Google Scholar 

  9. Gamalei, Yu.V. and Pakhomova, M.V., Leaf Minor Veins of Dicotyledons. 3. Structure, Functions, and Evolution, Bot. Zh. (Leningrad), 1984, vol. 69, pp. 1159–1166.

    Google Scholar 

  10. Fisher, D.G., Ultrastructure, Plasmodesmatal Frequency, and Solute Concentration in Green Areas of Variegated Coleus blumei Benth. Leaves, Planta, 1986, vol. 169, pp. 141–152.

    Article  Google Scholar 

  11. Gamalei, Yu.V., Structure and Function of Leaf Minor Veins in Trees and Herbs. A Taxonomic Review, Trees, 1989, vol. 3, pp. 96–110.

    Article  Google Scholar 

  12. Gamalei, Yu.V., Phloem Loading and Its Development Related to Plant Evolution from Trees to Herbs, Trees, 1991, vol. 5, pp. 50–64.

    Article  Google Scholar 

  13. Turgeon, R., Beebe, D.U., and Gowan, E., The Intermediary Cell: Minor Vein Anatomy and Raffinose Oligosaccharide Synthesis in the Scrophulariaceae, Planta, 1993, vol. 191, pp. 446–456.

    Article  CAS  Google Scholar 

  14. Gamalei, Yu.V., Transportnaya sistema sosudistykh rastenii (Transport System of Vascular Plants), St. Petersburg: St. Petersburg. Gos. Univ., 2004.

    Google Scholar 

  15. Gamalei, Yu.V., Pakhomova, M.V., Batashev, D.R., Razumovskaya, A.V., Voitsekhovskaya, O.V., and Sheremet’ev, S.N., Symplastic and Apoplastic Dicotyledons, Bot. Zh. (St. Petersburg), 2005, vol. 90, pp. 1473–1485.

    Google Scholar 

  16. Voitsekhovskaja, O.V., Koroleva, O.A., Batashev, D.R., Knop, Ch., Tomos, D., Gamalei, Yu.V., Heldt, H., and Lohaus, G., Phloem Loading in Two Scrophulariaceae Species: What Can Drive Symplastic Flow via Plasmodesmata? Plant Physiol., 2006, vol. 140, pp. 383–395.

    Article  PubMed  CAS  Google Scholar 

  17. Turgeon, R., Phloem Loading and Plasmodesmata, Trends Plant Sci., 1996, vol. 1, pp. 418–423.

    Article  Google Scholar 

  18. Batashev, D.R. and Gamalei, Yu.V., Specific Features of Terminal Phloem in Leaves of Gentianaceae, Bot. Zh. (St. Petersburg), 2000, vol. 85, pp. 1–8.

    Google Scholar 

  19. Turgeon, R., Medville, R., and Nixon, K.C., The Evolution of Minor Vein Phloem and Phloem Loading, Am. J. Bot., 2001, vol. 88, pp. 1331–1339.

    Google Scholar 

  20. Batashev, D.R. and Gamalei, Yu.V., Terminal Phloem Organization in Apocynaceae, Bot. Zh. (St. Petersburg), 2005, vol. 91, pp. 1368–1377.

    Google Scholar 

  21. Köhler, R.H., Cao, J., Ziphel, W.R., Webb, W.W., and Hanson, M.R., Exchange of Protein Molecules through Connections between Higher Plant Plastids, Science, 1997, vol. 276, pp. 2039–2042.

    Article  PubMed  Google Scholar 

  22. Gray, J.C., Sillivan, J.A., Hibberd, J.M., and Hansen, M.R., Stromules: Mobile Protrusions and Interconnections between Plastids, Plant Biol., 2001, vol. 3, pp. 223–233.

    Article  CAS  Google Scholar 

  23. Kwok, E. and Hanson, M.R., Microfilaments and Microtubules Control the Morphology and Movement of Non-Green Plastids and Stromules in Nicotiana tabacum, Plant J., 2003, vol. 35, pp. 16–26.

    Article  PubMed  Google Scholar 

  24. Kwok, E. and Hanson, M.R., Stromules and the Dynamic Nature of Plastid Morphology, J. Microscopie, 2004, vol. 214, pp. 124–137.

    Article  CAS  Google Scholar 

  25. Waters, M.T., Fray, R.G., and Pyke, K.A., Stromule Formation Is Dependent upon Plastid Size, Plastid Differentiation Status and the Density of Plastids within the Cell, Plant J., 2004, vol. 39, pp. 655–667.

    Article  PubMed  Google Scholar 

  26. Gunning, B.E.S., Plastid Stromules: Video Microscopy of Their Outgrowth, Refraction, Tensioning, Anchoring, Branching, Bridging, and Tip-Shedding, Protoplasma, 2005, vol. 225, pp. 33–42.

    Article  PubMed  Google Scholar 

  27. Natesan, S.K.A., Sullivan, J.A., and Gray, J.C., Stromules: A Characteristic Cell-Specific Feature of Plastid Morphology, J. Exp. Bot., 2005, vol. 56, pp. 787–797.

    Article  PubMed  CAS  Google Scholar 

  28. Haberlandt, G., Die Chlorophyllkörper der Selaginellen, Flora, 1888, vol. 71, pp. 291–308.

    Google Scholar 

  29. Senn, G., Die Gestalts-und Lageveränderung der Pflanzen Chromatophoren, Leipzig: Wilhelm Engelmann Verlag, 1908.

    Google Scholar 

  30. Arimura, S.-I., Hirai, A., and Tsutsumi, N., Numerous and Highly Developed Tubular Projections from Plastids Observed in Tobacco Epidermal Cells, Plant Sci., 2001, vol. 169, pp. 449–454.

    Article  Google Scholar 

  31. Gamalei, Yu.V., Dynamic Net Organization of Plastids and Mitochondria in Plant Cells, Tsitologiya, 2006, vol. 48, pp. 455–467.

    Google Scholar 

  32. Gamalei, Yu.V., Plant Vacuome, Usp. Sovrem. Biol., 2006, vol. 126, pp. 789–798.

    Google Scholar 

  33. Menzel, D., An Interconnected Plastidom in Acetobularia: Implications for the Mechanism of Chloroplast Motility, Protoplasma, 1994, vol. 179, pp. 166–171.

    Article  Google Scholar 

  34. Gamalei, Yu.V., Fromm, J., Krabel, D., and Eschrich, W., Cytoplasmic Streaming (Chloroplast Movement) as Response to Wounding in Elodea canadensis, J. Plant Physiol., 1994, vol. 144, pp. 518–524.

    CAS  Google Scholar 

  35. Famintsyn, A.S., Role of Symbiosis in Organism Evolution, Tr. Imp. Akad. Nauk, Fiz.-Mat. Otd., 1907, vol. 20, pp. 3–35.

    Google Scholar 

  36. Merezhkovskii, K.S., Teoriya dvukh plazm kak osnova simbiogenezisa i novogo ucheniya o proiskhozhdenii organizmov (Theory of Two Plasms as the Basis for Symbiogenesis and New Doctrine of Organism Origin), Kazan, 1909.

  37. Cavalier-Smith, T., Membrane Heredity, Symbiogenesis, and the Multiple Origins of Algae, Biodiversity and Evolution, Arai, R., et al., Ed., Tokyo: Natl. Sci. Mus. Found., 1995, pp. 75–114.

    Google Scholar 

  38. Cavalier-Smith, T., Symbiogenesis, Membrane Heredity, and Cell Evolution, 100 Years of the Endosymbiotic Theory: From Prokaryotes to Eukaryotic Organelles, Soll, J., Ed., Hamburg, 2005, p. 12.

  39. Pinevich, A.V. and Averina, S.G., Oksigennaya fototrofiya (Oxygenic Phototrophy), St. Petersburg: St. Petersburg. Gos. Univ., 2002.

    Google Scholar 

  40. Hortensteiner, S., Martinoia, E., and Amrhein, N., Reappearance of Hydrolytic Activities and Tonoplast Proteins in the Regenerated Vacuole of Evacuolated Protoplasts, Planta, 1992, vol. 187, pp. 113–121.

    Article  Google Scholar 

  41. Hortensteiner, S., Martinoia, E., and Amrhein, N., Factors Affecting the Re-Formation of Vacuoles in Evacuolated Protoplasts and the Expression of the Two Vacuolar Proton Pumps, Planta, 1994, vol. 192, pp. 395–403.

    Article  PubMed  CAS  Google Scholar 

  42. Newell, J.M., Leigh, R.A., and Hall, J.L., Vacuole Development in Cultured Evacuolated Oat Mesophyll Protoplasts, J. Exp. Bot., 1998, vol. 49, pp. 817–827.

    Article  CAS  Google Scholar 

  43. Gamalei, Yu.V. and Pakhomova, M.V., Electron-Microscopic Evidence of the Vacuolar Nature of Phloem Exudate, Fiziol. Rast. (Moscow), 2002, vol. 47, pp. 181–193 (Russ. J. Plant Physiol., Engl. Transl., pp. 159–170).

    Google Scholar 

  44. Münch, E., Die Stoffbewegungen in der Pflanze, Jena: Fischer, 1930.

    Google Scholar 

  45. Gamalei, Yu.V., Floema lista (Leaf Phloem), Leningrad: Nauka, 1990.

    Google Scholar 

  46. Knop, Ch., Voitsekhovskaja, O.V., and Lohaus, G., Sucrose Transporters in Two Members of the Scrophulariaceae with Different Types of Transport Sugars, Planta, 2001, vol. 213, pp. 80–91.

    Article  PubMed  CAS  Google Scholar 

  47. Leigh, R.A., The Role of the Vacuole in the Accumulation and Mobilization of Sucrose, Plant Growth Regul., 1984, vol. 2, pp. 339–346.

    Article  CAS  Google Scholar 

  48. Leigh, R.A., The Solute Composition of Vacuoles, Adv. Bot. Res., 1997, vol. 25, pp. 171–194.

    Article  Google Scholar 

  49. Marty, F., Plant Vacuoles, Plant Cell, 1999, vol. 11, pp. 587–599.

    Article  PubMed  CAS  Google Scholar 

  50. Eschrich, W., Phloem Unloading of Photoassimilates, Transport of Photoassimilates, Baker, D.A. and Milburn, J.A., Eds., Harlow: Longman, 1989, pp. 206–264.

    Google Scholar 

  51. Feshchenko, N.F., Krasavina, M.S., Burmistrova, N.A., and Nosov, A.V., Phloem Unloading and Activity of Enzymes Hydrolyzing Sucrose in the Apex of the Growing Root, Dokl. Akad. Nauk, 2004, vol. 399, pp. 1–4.

    Google Scholar 

  52. Gamalei, Yu.V., Structure and Development of Phloem Cells. 1. Sieve-Tube Elements, Bot. Zh. (Leningrad), vol. 66, pp. 1081–1096.

  53. Gamalei, Yu.V., Pakhomova, M.V., Syutkina, A.V., and Voitsekhovskaja, O.V., Compartmentation of Assimilate Fluxes in Leaves. 1. Ultrastructural Responses of Mesophyll and Companion Cells to the Alteration of Assimilate Export, Plant Biol., 2000, vol. 2, pp. 98–106.

    Article  Google Scholar 

  54. Voitsekhovskaja, O.V., Pakhomova, M.V., Syutkina, A.V., Gamalei, Yu.V., and Heber, U., Compartmentation of Assimilate Fluxes in Leaves. 2. Apoplastic Sugar Levels in Leaves of Plants with Different Companion Cell Types, Plant Biol., 2000, vol. 2, pp. 107–112.

    Article  CAS  Google Scholar 

  55. Lichtner, F.T., Phloem Transport of Agricultural Chemicals, Phloem Transport, Cronshaw, J., Lucas W.J., and Giaquinta, R.T., Eds., New York: Alan R. Liss, 1986, pp. 601–608.

    Google Scholar 

  56. Lichtner, F.T., Phloem Mobility of Crop Protection Products, Aust. J. Plant Physiol., 2000, vol. 27, pp. 609–614.

    CAS  Google Scholar 

  57. Zimmermann, M.H. and Ziegler, H., List of Sugars and Sugar Alcohols in Sieve-Tube Exudates, Encyclopedia of Plant Physiology, New Ser., vol. 1, Transport in Plants, I. Phloem Transport, Zimmermann, M.H. and Milburn, J.A., Eds., Berlin: Springer-Verlag, 1975, pp. 480–503.

    Google Scholar 

  58. Gamalei, Yu.V., Structure of Leaf Minor Veins and Transport Forms of Sugar, Dokl. Akad. Nauk SSSR, 1984, vol. 277, pp. 1513–1516.

    Google Scholar 

  59. Voitsekhovskaja, O.V., On the Role of Sugar Compartmentation and Stachyose Synthesis in Symplastic Phloem Loading, Göttingen: Cuvillier, 2002.

    Google Scholar 

  60. Keller, F. and Pharr, D.M., Metabolism of Carbohydrates in Sinks and Sources: Galactosyl-Sucrose Oligosaccharides, Photoassimilate Distribution in Plants and Crops: Source-Sink Relationships, Zamski, E. and Schaffer, A.A., Eds., New York: Marcel Dekker, 1996, pp. 157–183.

    Google Scholar 

  61. Komor, E., Sucrose Uptake by Cotyledons of Ricinus communis L.: Characteristics, Mechanism and Regulation, Planta, 1977, vol. 187, pp. 119–131.

    Article  Google Scholar 

  62. Giaquinta, R.T., Phloem Loading of Sucrose, Annu. Rev. Plant Physiol., 1983, vol. 34, pp. 347–387.

    Article  CAS  Google Scholar 

  63. Stadler, R. and Sauer, N., The Arabidopsis thaliana at SUC2 Gene Is Specifically Expressed in Companion Cells, Bot. Acta, 1996, vol. 109, pp. 299–306.

    CAS  Google Scholar 

  64. Webb, J.A. and Gorham, P.R., The Effect of Node Temperature on Assimilation and Translocation of 14C in Squash, Can. J. Bot., 1965, vol. 43, pp. 1009–1020.

    Google Scholar 

  65. Gamalei, Yu.V. and Pakhomova, M.V., The Time Course of Carbohydrate Transport and Storage in the Leaves of the Plant Species with Symplastic and Apoplastic Phloem Loaded under the Normal and Experimentally Modified Conditions, Fiziol. Rast. (Moscow), 2000, vol. 47, pp. 120–141 (Russ. J. Plant Physiol., Engl. Transl., pp. 109–128).

    Google Scholar 

  66. Ntsika, G. and Delrot, S., Changes in Apoplastic and Intracellular Leaf Sugars Induced by the Blocking of Export in Vicia faba, Physiol. Plant., 1986, vol. 68, pp. 145–153.

    Article  CAS  Google Scholar 

  67. Ziegler, H., Nature of Transported Substances, Encyclopedia of Plant Physiology, New Ser., vol. 1, Transport in Plants, I. Phloem Transport, Zimmermann, M.H. and Milburn, J.A., Eds., Berlin: Springer-Verlag, 1975, pp. 59–138.

    Google Scholar 

  68. Flora, L.L. and Madore, M.A., Sucrose and Mannitol Transport in Olive (Olea europaea L.), Planta, 1993, vol. 189, pp. 141–152.

    Article  Google Scholar 

  69. Flora, L.L. and Madore, M.A., Significance of Minor-Vein Anatomy to Carbohydrate Transport, Planta, 1996, vol. 198, pp. 171–178.

    Article  CAS  Google Scholar 

  70. Freitag, H. and Stichler, W., A Remarkable New Leaf Type with Unusual Photosynthetic Tissue in a Central Asiatic Genus of Chenopodiaceae, Plant Biol., 2000, vol. 2, pp. 154–160.

    Article  Google Scholar 

  71. Voznesenskaya, E.V., Franceschi, V.R., Kilrats, O., Freitag, H., and Edwards, G.E., Kranz Anatomy Is Not Essential for Terrestrial C4 Plant Photosynthesis, Nature, 2001, vol. 414, pp. 543–546.

    Article  PubMed  CAS  Google Scholar 

  72. Thorne, J.H., Phloem Unloading of C and N Assimilates in Developing Seeds, Annu. Rev. Plant Physiol., 1985, vol. 36, pp. 317–343.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © Yu.V. Gamalei, 2007, published in Fiziologiya Rastenii, 2007, Vol. 54, No. 1, pp. 5–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gamalei, Y.V. The role of mesophyll cell tonoplast in determining the route of phloem loading. Thirty years of the studies of phloem loading. Russ J Plant Physiol 54, 1–9 (2007). https://doi.org/10.1134/S1021443707010013

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1021443707010013

Key words

Navigation