Skip to main content
Log in

Glass-Transition Temperature and Characteristic Temperatures of α Transition in Amorphous Polymers Using the Example of Poly(methyl methacrylate)

  • Investigation Methods
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

The glass-transition temperatures of poly(methyl methacrylate) measured by 20 different physical methods are analyzed. At equal impact frequencies and heating rates of the samples, the values of glass-transition temperatures measured by different methods are equivalent. As follows from the analysis, for atactic PMMA with Mw > 1 × 105 without additives, crosslinking agents, and plasticizers at a standard heating rate of 10°С/min, the most probable values of the extrapolated onset temperature of the α transition Tf as a point of intersection of the first baseline and a line extrapolating linear decrease in heat flow in the region of the α transition are 105 ± 5°С; inflection temperatures corresponding to the temperature of a peak on the temperature derivative of heat flow in the region of the α transition Ti and the temperature of the midpoint determined at the half jump of normalized heat flow Tm are observed at 125 ± 5°С; and the values of the extrapolated end temperature of the α transition Te as the points of intersection of the line extrapolating the linear decrease in heat flow in the region of the α transition and the second baseline in the region of the rubbery state and the temperature of the last return to the second baseline Tr attain 140 ± 5°С.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. A. Tager, Physics and Chemistry of Polymers (Nauchnyi mir, Moscow, 2010) [in Russian].

    Google Scholar 

  2. N. I. Perepechko, Introduction to Polymer Physics (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  3. G. M. Bartenev and A. G. Barteneva, Relaxation Properties of Polymers (Khimiya, Moscow, 1992) [in Russian].

    Google Scholar 

  4. A. A. Askadskii, Polymer Deformation (Khimiya, Moscow, 1973) [in Russian].

    Google Scholar 

  5. T. V. Tropin, Ju. V. P. Shmelzer, and V. L. Aksenov, Phys.-Usp. 59, 42 (2016).

    Google Scholar 

  6. T. S. Chow, Polym. Eng. Sci. 24, 1079 (1984).

    Article  CAS  Google Scholar 

  7. T. F. Protzman, J. Appl. Phys 20, 627 (1949).

    Article  CAS  Google Scholar 

  8. ASTM E1356–08: Standard Test Method for Assignment of the Glass Transition Temperatures by Differential Scanning Calorimetry, 2014.

  9. ASTM D3418–15: Standard test Method for Transition Temperatures and Enthalpies of Fusion and Crystallization of Polymers by Differential Scanning Calorimetry, 2015.

  10. ASTM D6604–00: Standard Practice for Glass Transition Temperatures of Hydrocarbon Resins by Differential Scanning Calorimetry, 2000.

  11. ASTM E1545–00: Standard test Method for Assignment of the Glass Transition Temperature by Thermomechanical Analysis, 2000.

  12. ASTM E1824–18: Standard Test Method for Assignment of a Glass Transition Temperature using Thermomechanical Analysis: Tension Method, 2018.

  13. ASTM E1640–18: Standard Test Method for Assignment of the Glass Transition Temperature by Dynamic Mechanical Analysis, 2018.

  14. ASTM D7028–07: Standard Test Method for Glass Transition Temperature (DMA) of Polymer Matrix Composites by Dynamic Mechanical Analysis (DMA), 2015.

  15. I. Havlicek, V. Vojta, M. Ilavsky, and J. Hrouz, Macromolecules 13, 357 (1980).

    Article  CAS  Google Scholar 

  16. U. Ali, K. G. B. Abd. Karim, and N. A. Buang, Polym. Rev. 55, 678 (2015).

    Article  CAS  Google Scholar 

  17. L. Chang and E. M. Woo, Polym. Chem. 1, 198 (2010).

    Article  CAS  Google Scholar 

  18. N. M. Alves, J. L. G. Ribelles, J. A. G. Tejedor, and J. F. Mano, Macromolecules 37, 3735 (2004).

    Article  CAS  Google Scholar 

  19. J. Biros, T. Larina, J. Trekoval, and J. Pouchly, Colloid Polym. Sci. 260, 27 (1982).

    Article  CAS  Google Scholar 

  20. A. Bironeau, T. Salez, G. Miquelard-Garnier, and C. Sollogoub, Macromolecules 50, 4064 (2017).

    Article  CAS  Google Scholar 

  21. T. G. Gerasimov, M. Cinke, M. Meyyappan, and J. P. Harmon, Polym. Bull. 52, 259 (2004).

    Article  CAS  Google Scholar 

  22. B. L. Denq, Y. S. Hu, W. Y. Chiu, L. W. Chen, and Y. S. Chid, Polym. Degrad. Stab. 57, 269 (1997).

    Article  CAS  Google Scholar 

  23. T. Dudek and J. Lohr, J. Appl. Polym. Sci. 9, 3795 (1965).

    Article  CAS  Google Scholar 

  24. M. Eriksson, H. Goossens, and T. Peijs, Nanocomposites 1, 36 (2015).

    Article  CAS  Google Scholar 

  25. C. M. Evans and J. M. Torkelson, Polymer 53, 6118 (2012).

    Article  CAS  Google Scholar 

  26. F. Fernandes-Martin, I. Fernandes-Pierola, and A. Horta, J. Polym. Sci., Polym. Phys. Ed. 19, 1353 (1981).

    Article  Google Scholar 

  27. D. S. Fryer, R. D. Peters, E. J. Kim, J. E. Tomaszewski, J. J. de Pablo, P. F. Nealey, C. C. White, and W. Wu, Macromolecules 34, 5627 (2001).

    Article  CAS  Google Scholar 

  28. Y. Fu, Y.-T. R. Lau, L.-T. Weng, K.-M. Ng, and C.-M. Chan, J. Colloid Interface Sci. 504, 758 (2017).

    Article  CAS  PubMed  Google Scholar 

  29. P. Gilormini, L. Chevalier, and G. Regnier, Polym. Eng. Sci. 50, 2004 (2010).

    Article  CAS  Google Scholar 

  30. S. Kalachandra and D. T. Turner, J. Polym. Sci., Part B: Polym. Phys. 25, 97 (1987).

    Google Scholar 

  31. S.-W. Kuo, H.-C. Kao, and F.-C. Chang, Polymer 44, 6873 (2003).

    Article  CAS  Google Scholar 

  32. S. L. Malhotra, L. Minh, and L. P. Blanchhard, J. Macromol. Sci., Part A: Pure Appl. Chem. 19, 579 (1983).

    Article  Google Scholar 

  33. Y. Nakamura, E. Kariya, T. Fukuda, S. Fujii, K. Fujiwara, and S. Hikasa, Polym. Polym. Compos. 21, 367 (2013).

    CAS  Google Scholar 

  34. G. Palm, R. B. Dupaix, and J. Castro, J. Eng. Mater. Technol. 128, 559 (2006).

    Article  CAS  Google Scholar 

  35. P. Poomalai and T. O. Varghese, and Siddaramaiah, ISRN Mater. Sci. 2011, Art. 921293 (2011).

    Google Scholar 

  36. N. R. Pradhan and G. S. Iannacchione, J. Phys. D: Appl. Phys. 43, Art. 105401 (2010).

    Google Scholar 

  37. G. L. G. Ribelles, M. M. Pradas, J. M. M. Duenas, and C. T. Cabanilles, J. Non-Cryst. Solids 307–310, 731 (2002).

    Google Scholar 

  38. L. S. A. Smith and V. Schmitz, Polymer 29, 1871 (1988).

    Article  CAS  Google Scholar 

  39. P. Spasojevic, M. Zrilic, V. Panic, D. Stamenkovic, S. Seslija, and S. Velickovic, Int. J. Polym. Sci. 2015, Art. ID 561012 (2015).

    Google Scholar 

  40. N. Tanio, H. Kato, Y. Koike, H. E. Bair, S. Matsuoka, and L. L. Bluler, Jr., Polym. J. 30, 56 (1998).

    Article  CAS  Google Scholar 

  41. P. Thomas, R. S. E. Ravindran, and K. B. R. Varma, J. Therm. Anal. Calorim. 115, 1311 (2014).

    Article  CAS  Google Scholar 

  42. S.-L. Yeh, C.-Y. Zhu, and S.-W. Kuo, Polymers 7, 1379 (2015).

    Article  CAS  Google Scholar 

  43. G. Zhang, J. Zhang, S. Wang, and D. Shen, J. Polym. Sci., Part B: Polym. Phys. 41, 23 (2003).

    Article  CAS  Google Scholar 

  44. G. M. Bartenev, Vysokomol. Soedin., Ser. A 29, 67 (1987).

    CAS  Google Scholar 

  45. I. A. Dyachkov, Moscow Univ. Chem. Bull. (Engl. Transl.) 65, 304 (2010).

    Article  Google Scholar 

  46. A. I. Slutsker, Yu. I. Polikarpov, and K. V. Vasil’eva, Tech. Phys. 47, 880 (2002).

    Article  CAS  Google Scholar 

  47. P. Rittigstein and J. M. Torkelson, J. Polym. Sci., Part B: Polym. Phys. 44, 2935 (2006).

    Article  CAS  Google Scholar 

  48. N. Garcia, T. Corrales, J. Guzman, and P. Tiemblo, Polym. Degrad. Stab. 92, 635 (2007).

    Article  CAS  Google Scholar 

  49. C. Li, J. Wu, J. Zhao, D. Zhao, and Q. Fan, Eur. Polym. J. 40, 1807 (2004).

    Article  CAS  Google Scholar 

  50. R. Avolio, G. Gentile, M. Avella, D. Capitani, and M. E. Errico, J. Polym. Sci., Part A: Polym. Chem. 48, 5618 (2010).

    Article  CAS  Google Scholar 

  51. P. S. Chinthamanipeta, S. Kobukata, H. Nakata, and D. A. Shipp, Polymer 49, 5636 (2008).

    Article  CAS  Google Scholar 

  52. J. Moll and S. K. Kumar, Macromolecules 45, 1131 (2012).

    Article  CAS  Google Scholar 

  53. J. F. De Deus, G. P. Souza, W. A. Corradini, T. D. Z. Atvars, and L. Akcelrud, Macromolecules 37, 6938 (2004).

    Article  CAS  Google Scholar 

  54. S. Agrawal, D. Patida, M. Dixit, and K. Sharma, AIP Conf. Proc. 1249, 79 (2010).

    Article  CAS  Google Scholar 

  55. W. N. Ayre, S. P. Denyer, and S. L. Evans, J. Mech. Behav. Biomed. Mater. 32, 76 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. I. M. Barszczewska-Rybarek, A. Korytkowska-Wałach, M. Kurcok, G. Chladek, and J. Jacek Kasperski, Acta Bioeng. Biomech. 19, 47 (2017).

    PubMed  Google Scholar 

  57. M. Dixit, S. Gupta, V. Mathur, K. S. Rrathore, K. Sharma, and N. S. Saxena, Chalcogenide Lett 6, 131 (2009).

    CAS  Google Scholar 

  58. W. G. Gall and N. G. McCrum, J. Polym. Sci. 50, 489 (1961).

    Article  CAS  Google Scholar 

  59. R. A. Haldon and R. Simha, J. Appl. Phys. 39, 1890 (1968).

    Article  CAS  Google Scholar 

  60. J. K. Gillham and S. J. Stadnicki, J. Appl. Polym. Sci. 21, 401 (1977).

    Article  CAS  Google Scholar 

  61. D. Ionita, M. Cristea, and D. Banabic, J. Therm. Anal. Calorim. 120, 1775 (2015).

    Article  CAS  Google Scholar 

  62. A. S. Merenga and G. A. Katana, Int. J. Polym. Mater. 60, 115 (2011).

    Article  CAS  Google Scholar 

  63. C. W. van der Wal, Rheol. Acta 6, 316 (1967).

    Article  Google Scholar 

  64. O. V. Startsev, V. P. Rudnev, and B. V. Perov, Polym. Degrad. Stab. 39, 373 (1993).

    Article  CAS  Google Scholar 

  65. K. Wollny, in Application Note Physica Rheometers (Anton Paar Germany GmbH, Germany, 2006), p. 1.

    Google Scholar 

  66. S. R. Valandro, P. C. Lombardo, A. L. Poli, M. A. Horn, M. G. Neumann, and C. C. S. Cavalheiro, Mater. Res. 17, 265 (2014).

    Article  CAS  Google Scholar 

  67. O. V. Startsev, V. P. Rudnev, Yu. N. Ivonin, E. F. Nikishin, E. A. Barbashev, V. A. Bogatov, and B. V. Perov, Vysokomol. Soedin., Ser. A 29, 2577 (1987).

    CAS  Google Scholar 

  68. O. V. Startsev and V. P. Rudnev, Vysokomol. Soedin., Ser. B 30, 18 (1988).

    CAS  Google Scholar 

  69. Y.-H. Hu, C.-Y. Chen, and C.-C. Wang, Polym. Degrad. Stab. 84, 545 (2004).

    Article  CAS  Google Scholar 

  70. W. M. Davis and C. W. Macosko, Polym. Eng. Sci. 17, 32 (1977).

    Article  CAS  Google Scholar 

  71. G. M. Bartenev, Polym. Sci., Ser. B 43, 202 (2001).

    Google Scholar 

  72. G. M. Bartenev, V. A. Lomovskoi, E. Yu. Ovchinnikov, N. Yu. Karandashova, and V. V. Tulinova, Vysokomol. Soedin., Ser. A 35, 1658 (1993).

    Google Scholar 

  73. H. Shindo, I. Murakami, and H. Yamamura, J. Polym. Sci., Part A-1: Polym. Chem. 7, 297 (1969).

    Article  CAS  Google Scholar 

  74. E. V. Thompson, J. Polym. Sci., Part A-1: Polym. Chem. 4, 199 (1966).

    Article  CAS  Google Scholar 

  75. J. A. Shetter, J. Polym. Sci., Part B: Polym. Lett. 1, 209 (1963).

    Article  CAS  Google Scholar 

  76. A. A. Tager, A. I. Suvorova, L. N. Goldyrev, V. I. Esafov, and L. P. Topina, Vysokomol. Soedin. 4, 809 (1962).

    CAS  Google Scholar 

  77. A. N. Maslov, S. G. Novozhenina, L. A. Smirnova, N. A. Agareva, A. P. Aleksandrov, N. M. Bityurin, and V. A. Barachevskii, Vestn. Nizhegorodskogo Univ. im. N.I. Lobachevskogo, Ser. Khim., No. 1, 24 (2001).

    Google Scholar 

  78. R. Klein, Laser Welding of Plastics: Materials, Processes and Industrial Applications. Material Properties of Plastics (Wiley, Weinheim, 2012), Chap. 1.

    Google Scholar 

  79. P. D. Condo and K. P. Johnson, J. Polym. Sci., Part B: Polym. Phys. 32, 523 (1994).

    Article  CAS  Google Scholar 

  80. G. M. Bartenev and B. Tsoi, Vysokomol. Soedin., Ser. A 27, 2422 (1985).

    CAS  Google Scholar 

  81. G. M. Bartenev, D. Shermatov, and A. G. Barteneva, Polym. Sci., Ser. B 43, 708 (2001).

    Google Scholar 

  82. D. Mathiesen, D. Vogtmann, and R. Dupaix, in Proceedings of Annual Conference on Experimental and Applied Mechanics “Challenges in Mechanics of Time-Dependent Materials and Processes ion Conventional and Mulrifunctional Materials”, Lombard, IL, USA, 2014 (Lombard, 2014), Vol. 2.

    Google Scholar 

  83. J. R. McLoughlin and A. V. Tobolsky, J. Colloid Sci. 7, 555 (1952).

    Article  CAS  Google Scholar 

  84. I. Perepechko, Acoustic Methods of Investigation Polymers (Mir, Moscow, 1975).

    Google Scholar 

  85. L. I. Pavlinov, I. B. Rabinovich, V. Z. Pogorelko, and A. V. Ryabov, Vysokomol. Soedin., Ser. A 10, 1270 (1968).

    CAS  Google Scholar 

  86. I. I. Perepechko and O. V. Startsev, Akust. Zh. 22, 749 (1976).

    CAS  Google Scholar 

  87. K. Fukao, S. Uno, Y. Miyamoto, A. Hoshino, and H. Miyaji, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 64, 051807 (2001).

    Article  CAS  Google Scholar 

  88. M. Wubbenhorst, C. A. Murray, J. A. Forrest, and J. R. Dutcher, in Proceedings of 11 International Symposium on Electrets, Melbourne, Australia, 2002 (Melbourne, 2002), p. 401.

    Google Scholar 

  89. M. Erber, M. Tress, E. U. Mapesa, A. Serghei, K.-J. Eichhorn, B. Voit, and F. Kremer, Macromolecules 43, 7729 (2010).

    Article  CAS  Google Scholar 

  90. T. Hayashi and K. Fukao, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 89, 022602 (2014).

    Article  CAS  Google Scholar 

  91. F. Namouchi, H. Smaoui, H. Guermazi, N. Fourati, C. Zerrouki, S. Agnel, A. Toureille, and J. J. Bonnet, Phys. Procedia 2, 961 (2009).

    Article  CAS  Google Scholar 

  92. W. Wunderlich, in Polymer Handbook, Ed. by J. Brandrup, E. H. Immergut, and E. A. Grulke (Wiley, New York, 1975).

  93. W. N. Dos Santos, J. A. de Sousa, and R. Gregorio, Polym. Test. 32, 987 (2013).

    Article  CAS  Google Scholar 

  94. S. Agarval, N. S. Sahena, and V. Kumar, Appl. Nanosci. 5, 697 (2015).

    Article  CAS  Google Scholar 

  95. Z. M. Elimat, A. M. Zixlif, and M. Avella, J. Exp. Nanosci. 3, 259 (2008).

    Article  CAS  Google Scholar 

  96. K. Eiermann, Kolloid Z. Z. Polym. 198, 5 (1964).

    Article  CAS  Google Scholar 

  97. W. Knappe, P. Lohe, and R. Wutschig, Angew. Makromol. Chem. 7, 181 (1969).

    Article  CAS  Google Scholar 

  98. Y. Grohens, M. Brogly, C. Labbe, M.-O. David, and J. Schultz, Langmuir 14, 2929 (1998).

    Article  CAS  Google Scholar 

  99. O. Kahle, U. Wielsch, H. Metzner, J. Bauer, C. Uhlig, and C. Zawatzki, Thin Solid Films 313–314, 803 (1998).

    Google Scholar 

  100. C. B. Roth, A. Pound, S. W. Kamp, C. A. Murray, and J. R. Dutcher, Eur. Phys. J. E: Soft Matter Biol. Phys. 20, 441 (2006).

    Article  CAS  Google Scholar 

  101. G. Vignaud, J.-F. Bardeau, A. Gibaud, and Y. Grohens, Langmuir 21, 8601 (2005).

    Article  CAS  PubMed  Google Scholar 

  102. P. Michel, J. Dugas, J. M. Cariou, and L. Martin, J. Macromol. Sci., Part B: Phys. 25, 379 (1986).

    Article  Google Scholar 

  103. H. S. Shin, Y. M. Jung, T. Y. Oh, T. Chang, S. B. Kim, D. H. Lee, and I. Noda, Langmuir 18, 5953 (2002).

    Article  CAS  Google Scholar 

  104. J. M. O' Reily, D. M. Teegarden, and R. A. Mosher, Macromolecules 14, 1693 (1981).

    Article  Google Scholar 

  105. Y. Grohens, M. Brogly, C. Labbe, and J. Schultz, Polymer 38, 5913 (1997).

    Article  CAS  Google Scholar 

  106. D. M. Bertoldo, A. Reyer, and M. Musso, Int. J. Manage. Sci. Eng. 7, 84 (2016).

    Google Scholar 

  107. M. Christoff and T. D. Z. Atvars, Macromolecules 32, 6093 (1999).

    Article  CAS  Google Scholar 

  108. M. K. Mundra, S. K. Donthu, V. P. Dravid, and J. M. Torkelson, Nano Lett. 7, 713 (2007).

    Article  CAS  PubMed  Google Scholar 

  109. E. A. Friedman, A. J. Ritger, and R. D. Andrews, J. Appl. Phys. 40, 4243 (1969).

    Article  CAS  Google Scholar 

  110. H. R. Keymeulen, A. Diaz, H. H. Solak, C. David, F. Pfeiffer, B. D. Patterson, J. Friso van der Veen, M. P. Stoykovich, and P. F. Nealey, J. Appl. Phys. 102, 013528 (2007).

    Article  CAS  Google Scholar 

  111. T. D. Ignatova, A. E. Nesterov, T. D. Todosiichuk, and Yu. V. Maslak, Ukr. Khim. Zh. 77, 65 (2011).

    CAS  Google Scholar 

  112. A. O. Pozdnyakov, U. A. Handge, A. A. Konchits, and F. Alstädt, Tech. Phys. Lett. 36, 960 (2010).

    Article  CAS  Google Scholar 

  113. K. Min, M. Silberstein, and N. R. Aluru, J. Polym. Sci., Part B: Polym. Phys. 52, 444 (2014).

    Article  CAS  Google Scholar 

  114. M. Tsige and P. L. Taylor, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 65, 021805 (2002).

    Article  CAS  Google Scholar 

  115. A. A. Askadskii, Russ. Chem. Rev. 46, 589 (1977).

    Article  Google Scholar 

  116. A. Soldera, Macromol. Symp. 133, 21 (1998).

    Article  CAS  Google Scholar 

  117. M. Mohammadi, H. Fazli, M. Karevan, and J. Davoodi, Eur. Polym. J. 91, 121 (2017).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. V. Startsev.

Additional information

Original Russian Text © O.V. Startsev, M.P. Lebedev, 2018, published in Vysokomolekulyarnye Soedineniya, Seriya A, 2018, Vol. 60, No. 4S, pp. S3–S16.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Startsev, O.V., Lebedev, M.P. Glass-Transition Temperature and Characteristic Temperatures of α Transition in Amorphous Polymers Using the Example of Poly(methyl methacrylate). Polym. Sci. Ser. A 60, 911–923 (2018). https://doi.org/10.1134/S0965545X19010073

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X19010073

Navigation