Skip to main content
Log in

Effect of ceria and zirconia nanoparticles on mechanical behavior of nanocomposite hybrid coatings

  • Composites
  • Published:
Polymer Science, Series A Aims and scope Submit manuscript

Abstract

Epoxy-silica based hybrid nanocomposite coatings have been developed with different organicinorganic contents by sol–gel process. Various ratios of ceria and zirconia colloidal dispersions as inorganic nanoparticles are uniformly distributed in the hybrid sol. The hybrid sols are prepared by hydrolysis and condensation of 3-glycidoxypropyltrimethoxysilane (GPTMS) and tetraethylorthosilicate (TEOS) in acidic solution using bisphenol A (BPA) and 1-methyl-imidazol (MI). A thin layer of each sol is coated on a micro-glass slide and 1050 aluminum alloy as substrates. The effect of alkoxysilane precursors (i.e. TEOS and GPTMS) and inorganic to organic molar ratio are investigated. Nanoindentation and dynamic mechanical analysis (DMA) performed to characterize the mechanical properties of the coatings in nanorange scale. It is revealed that all hybrid nanocomposite coatings had appropriate flexibility and strong interfacial interaction with the aluminum alloy substrate. It is proposed that the ceria and zirconia nanoparticles can be bonded to the surrounding of siloxane ring which can be induced high restriction in polymeric chain mobility in dynamic mechanical analysis. Nanoindentation tests showed that by increasing the inorganic phase in the nanocomposite, both elastic modulus and hardness increase, especially they are very intense in the higher levels of inorganic content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. Lutz, O. V. D. Berg, J. V. Damme, K. Verheyen, E. Bauters, I. D. Graeve, F. E. D. Prez, and H. Terryn, ACS Appl. Mater. Interfaces 7, 175 (2015).

    Article  CAS  Google Scholar 

  2. U. Riaz, C. Nwaoha, and S. M. Ashraf, Prog. Org. Coat. 77, 743 (2014).

    Article  CAS  Google Scholar 

  3. D. Landolt, Corrosion and Surface Chemistry of Metals (CRC Press, Boca Raton, FL, 2007), pp. 513–584.

    Book  Google Scholar 

  4. H. J. Glasel, F. Bauer, H. Ernst, M. Findeisen, E. Hartmann, and H. Langguth, Macromol. Chem. Phys. 201, 2765 (2000).

    Article  CAS  Google Scholar 

  5. S. Sepeur, N. Kunze, B. Werner, and H. Schmidt, Thin Solid Films 35, 216 (1999).

    Article  Google Scholar 

  6. A. Ershad-Langroudi and A. Rahimi, Iran. Polym. J. 23, 267 (2014).

    Article  CAS  Google Scholar 

  7. Y. Z. K. Lahijani, M. Mohseni, and S. Bastani, J. Coat. Technol. Res. 10, 537 (2013).

    Article  CAS  Google Scholar 

  8. S. Sun, C. Li, L. Zhang, H. L. Du, and J. S. Burnell-Gray, Eur. Polym. J. 42, 1643 (2006).

    Article  CAS  Google Scholar 

  9. M. Iijima, M. Tsukada, and H. Kamiya, J. Colloid Interface Sci. 307, 418 (2007).

    Article  CAS  Google Scholar 

  10. M. Rostami, M. Mohseni, and Z. Ranjbar, Pigm. Resin Technol. 40, 363 (2011).

    Article  CAS  Google Scholar 

  11. D. Işın, N. Kayaman-Apohan, and G. Güngör, Prog. Org. Coat. 65, 477 (2009).

    Article  Google Scholar 

  12. J. C. Tan and A. K. Cheetham, Chem. Soc. Rev. 40, 1059 (2011).

    Article  CAS  Google Scholar 

  13. D. Guo, G. Xie, and J. Luo, J. Phys. D: Appl. Phys. 47, 013001 (2014).

    Article  Google Scholar 

  14. C. Sanchez, C. Boissière, D. Grosso, C. Laberty, and L. Nicole, Chem. Mater. 2, 682 (2008).

    Article  Google Scholar 

  15. W. C. Oliver and G. M. Pharr, J. Mater. Res. 19, 3 (2004).

    Article  CAS  Google Scholar 

  16. J. L. Hay and G. M. Pharr, “Instrumented Indentation Testing,” in ASM Handbook, Vol. 8: Mechanical Testing and Evaluation, Ed. by H. Kuhn and D. Medlin, 10th ed. (ASM International, Materials Park, OH, 2000), pp. 232–243.

    Google Scholar 

  17. Q. Kan, W. Yan, G. Kang, and Q. Sun, J. Mech. Phys. Solids 61, 2015 (2013).

    Article  CAS  Google Scholar 

  18. W. C. Oliver and G. M. Pharr, J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  19. I. N. Sneddon, Int. J. Eng. Sci. 3, 47 (1965).

    Article  Google Scholar 

  20. L. Cheng, X. Xia, W. Yu, L. E. Scriven, and W. W. Gerberich, J. Polym. Sci., Part B: Polym. Phys. 38, 10 (2000).

    Article  CAS  Google Scholar 

  21. H. Lu, B. Wang, J. Ma, G. Huang, and H. Viswanathan, Mech. Time-Depend. Mater. 7, 189 (2003).

    Article  Google Scholar 

  22. G. Huang, B. Wang, and H. Lu, Mech. Time-Depend. Mater. 8, 345 (2004).

    Article  CAS  Google Scholar 

  23. X. Li and B. Bhushan, Mater. Charact. 48, 11 (2002).

    Article  CAS  Google Scholar 

  24. J. Chen, J. Phys. D: Appl. Phys. 45, 203001 (2012).

    Article  Google Scholar 

  25. C. McManamon, J. P. de Silva, J. Power, S. Ramirez-Garcia, M. A. Morris, and G. L. W. Cross, Langmuir 30, 11412 (2014).

    Article  CAS  Google Scholar 

  26. G. Rivero, L. A. Fasce, S. M. Ceré, and L. B. Manfredi, Prog. Org. Coat. 77, 247 (2014).

    Article  CAS  Google Scholar 

  27. X. Zhang, L. Hu, and D. Sun, Acta Mater. 54, 5469 (2006).

    Article  CAS  Google Scholar 

  28. M. M. Shokrieh, M. R. Hosseinkhani, M. R. Naimi-Jamal, and H. Tourani, Polym. Test. 32, 45 (2013).

    Article  CAS  Google Scholar 

  29. A. Tiwari and L. H. Hihara, Prog. Org. Coat. 77, 1200 (2014).

    Article  CAS  Google Scholar 

  30. A. Allahverdi, M. Ehsani, H. Janpour, and S. Ahmadi, Prog. Org. Coat. 75, 543 (2012).

    Article  CAS  Google Scholar 

  31. M. Zhai and G. B. McKenna, J. Polym. Sci., Part B: Polym. Phys. 52, 633 (2014).

    Article  CAS  Google Scholar 

  32. R. Zandi-zand, A. Ershad-langroudi, and A. Rahimi, Prog. Org. Coat. 53, 286 (2005).

    Article  CAS  Google Scholar 

  33. R. Zandi-zand, A. Ershad-langroudi, and A. Rahimi, J. Non-Cryst. Solids 351, 1307 (2005).

    Article  CAS  Google Scholar 

  34. H. Abdollahi, A. Ershad-Langroudi, A. Salimi, and A. Rahimi, Ind. Eng. Chem. Res. 53, 10858 (2014).

    Article  CAS  Google Scholar 

  35. ISO 14577: Metallic Materials—Instrumented Indentation Test for Hardness and Materials Parameters—Part 1: Test Method, International Organization for Standardization, 2002.

  36. A. Ershad Langroudi, Int. J. Bio-Inorg. Hybrid. Nanomater. 2, 337 (2013).

    Google Scholar 

  37. M. R. Naimi-Jamal and G. Kaupp, Z. Metallkd. 96, 1226 (2005).

    Article  CAS  Google Scholar 

  38. H. Aguiar, J. Serra, P. Gonzalez, and B. León, J. Non-Cryst. Solids 355, 475 (2009).

    Article  CAS  Google Scholar 

  39. C. Jäger, P. Hartmann, R. Witter, and M. Braun, J. Non-Cryst. Solids 263–264, 61 (2000).

    Article  Google Scholar 

  40. M. Magi, E. Lippmaa, A. Samoson, G. Engelhardt, and A. R. Grimmer, J. Phys. Chem. 88, 1518 (1984).

    Article  CAS  Google Scholar 

  41. J. Gonzalez-Hernández, J. F. Pérez-Robles, F. Ruiz, and J. R. Martínez, Superficies Vacio 11, 1 (2000).

    Google Scholar 

  42. H. Yahyaei and M. Mohseni, Tribol. Int. 57, 147 (2013).

    Article  CAS  Google Scholar 

  43. H. Yahyaei, M. Mohseni, and S. Bastani, in Proceeding of Seventh Coating Science International Conference, Noordwijk, Netherlands, 2011 (Noordwijk, Netherlands, 2011).

    Google Scholar 

  44. R. Kasemann and H. Schmidt, in Proceeding of First European Workshop on Hybrid Organic–Inorganic Materials, Chateau de Bierville, France, 1993 (Chateau de Bierville, France, 1993), p. 171.

    Google Scholar 

  45. A. Allahverdi, M. Ehsani, H. Janpour, and S. Ahmadi, Prog. Org. Coat. 75, 543 (2012).

    Article  CAS  Google Scholar 

  46. X. Li and G. B. McKenna, ACS Macro Lett. 1 (3), 388 (2012).

    Article  CAS  Google Scholar 

  47. R. Y. Kannan, H. J. Salacinski, P. E. Butler, and A. M. Seifalian, Acc. Chem. Res. 38, 879 (2005).

    Article  CAS  Google Scholar 

  48. L. Gan, J. Wang, and R. M. Pilliar, Biomaterials 26, 189 (2005).

    Article  CAS  Google Scholar 

  49. H. Bei, Y. F. Gao, S. Shim, E. P. George, and G. M. Pharr, Phys. Rev. B 77, 060103 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Ershad-Langroudi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ershad-Langroudi, A., Zare, D. & Rahimi, A. Effect of ceria and zirconia nanoparticles on mechanical behavior of nanocomposite hybrid coatings. Polym. Sci. Ser. A 59, 425–436 (2017). https://doi.org/10.1134/S0965545X1703004X

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X1703004X

Navigation