Skip to main content
Log in

Inelastic deformation of glassy polyaryleneetherketone: Energy accumulation and deformation mechanism

  • Structure, Properties
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The plastic deformation of glassy non-annealed polyaryleneetherketone (PAEK) was investigated via deformation calorimetry and thermally stimulated recovery of residual strain. Polymer samples were deformed at room temperature under uniaxial compression up to ε def =–(40−50)% at a rate of 0.04 min−1. It was found that PAEK behaves in the deformation process similarly to many other glassy polymers: It stores internal energy excess at loading and contains two types of different inelastic strain carriers, namely the delayed elastic (ε de) and plastic (ε pl) strain carriers. The maximum level of the accumulated energy in PAEK reaches ≈ 8.3 J/g, which is close to those for glassy polystyrene and polycarbonate. Nearly all the deformation energy stored in PAEK is carried by the delayed-elastic strain. The carriers of plastic strain carry no extra energy or a very small amount of it. The inelastic deformation of glassy PAEK proceeds in two stages. The carriers of ε de are nucleated at the first stage of the deformation process, and the carriers of ε pl are nucleated at the second stage. It was shown that, during glassy-polymer loading, the molecular level structures carrying ε pl never appear by themselves, but appear only as a result of spontaneous reorganization of ε de. In other words, the plastic deformation appears in PAEK owing to the two-step process. This situation is typical for all glassy polymers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. V. Kazantseva, A. A. Askadskii, S. N. Salazkin, V. V. Shaposhnikova, T. I. Kiseleva, and K. I. Donetskii, Polym. Sci. 43 (1), 18 (2001).

    Google Scholar 

  2. A. A. Askadskii, S. N. Salazkin, K. A. Bychko, N. G. Gileva, M. G. Zolotukhin, G. L. Slonimskii, and S. R. Rafikov, Vysokomol. Soedin., Ser. A 31 (12), 2667 (1989).

    CAS  Google Scholar 

  3. A. S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge Univ. Press, New York, 2013).

    Book  Google Scholar 

  4. M. L. Falk and J. S. Langer, Annu. Rev. Condens. Matter Phys. 2, 353 (2011).

    Article  CAS  Google Scholar 

  5. E. F. Oleinik, O. B. Salamatina, S. N. Rudnev, and S. V. Shenogin, Vysokomol. Soedin., Ser. A 35 (11), 1819 (1993).

    CAS  Google Scholar 

  6. E. F. Oleinik, S. N. Rudnev, O. D. Salamatina, and M. I. Kotelyanskii, Polym. Sci., Ser. A 50 (5), 494 (2008).

    Article  Google Scholar 

  7. E. F. Oleinik, S. N. Rudnev, and O. B. Salamatina, Polym. Sci., Ser. A 49 (12), 1302 (2007).

    Article  Google Scholar 

  8. E. F. Oleinik, O. B. Salamatina, S. N. Rudnev, S. V. Kotomin, E. A. Egorov, and V. V. Zhizhenkov, Polym. Sci., Ser. A 51 (11), 1329 (2009).

    Article  Google Scholar 

  9. E. F. Oleinik, O. B. Salamatina, S. N. Rudnev, Z. Bartczak, and A. J. Galeski, J. Appl. Polym. Sci. 125 (6), 4169 (2012).

    Article  CAS  Google Scholar 

  10. B. Wunderlich and J. Grebovich, Adv. Polym. Sci. 60–61, 1 (1984).

    Article  Google Scholar 

  11. V. V. Shaposhnikova, S. N. Salazkin, K. I. Donetskii, G. V. Gorshkov, A. A. Askadskii, K. A. Bychko, V. V. Kazantseva, A. V. Samoryadov, A. P. Krasnov, B.S. Lioznov, O. V. Afonicheva, N. A. Svetlova, A. S. Kogan, and A. S. Tkachenko, Polym. Sci., Ser. A 41 (2), 124 (1999).

    Google Scholar 

  12. O. B. Salamatina, G. W. H. Hohne, S. N. Rudnev, and E. F. Oleinik, Thermochim. Acta 247 (1), 1 (1994).

    Article  CAS  Google Scholar 

  13. O. B. Salamatina, S. N. Rudnev, V. V. Voenniy, and E. F. Oleinik, J. Therm. Anal. 38 (5), 1271 (1992).

    Article  CAS  Google Scholar 

  14. E. F. Oleinik, O. B. Salamatina, S. N. Rudnev, and S. V. Shenogin, Polym. Adv. Technol. 6 (1), 1 (1995).

    Article  CAS  Google Scholar 

  15. E. F. Oleinik, High Performance Polymers, Ed. by E. Baer and S. Moet (Hanser Verlag, Munshen, 1990), p. 60.

  16. W. Hemminger and G. Höhne, Calorimetry, Fundamentals and Practice (Verlag Chemie, Weinhein, 1984).

    Google Scholar 

  17. P. H. Mott, A. S. Argon, and U. W. Suter, Philos. Mag. A 67 (4), 931 (1993).

    Article  CAS  Google Scholar 

  18. Yu. N. Rabotnov, Mechanics of Solid State under Deformation (Nauka, Moscow, 1988) [in Russian].

    Google Scholar 

  19. V. A. Kargin, Selected Works. Problems of Polymer Science (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  20. J. Perez, Physics and Mechanics of Amorphous Polymers (Balkema, Rotterdam, 1998).

    Google Scholar 

  21. A. S. Argon, Acta Metall. 27 (1), 47 (1979).

    Article  CAS  Google Scholar 

  22. L. D. Landau and E. M. Lifshits, The Theory of Elasticity (Nauka, Moscow, 1987) [in Russian].

    Google Scholar 

  23. V. A. Kargin and G. L. Slonimsky, Encyclopedia of Polymer Science and Technology (Wiley, New York, 1968), Vol. 8.

  24. V. A. Kargin and G. L. Slonimskii, Essays on Physics and Chemistry of Polymers (Khimiya, Moscow, 1967) [in Russian].

    Google Scholar 

  25. P. B. Bowden, The Physics of Glassy Polymers, Ed. by R. N. Haward (Wiley, New York, 1973), p. 279.

  26. J. Perez, Materiaux non Cristallins et Science du Desordre (Presses Polytechniques et Universitaires Romandes, Lausanne, 2001).

    Google Scholar 

  27. S. N. Rudnev, O. B. Salamatina, S. V. Kotomin, V. V. Zhizhenkov, E. A. Egorov, and E. F. Oleinik, Polym. Sci., Ser. A 49 (11), 1183 (2007).

    Article  Google Scholar 

  28. A. S. Krausz and H. Eyring, Deformation Kinetics (Wiley, New York, 1975).

    Google Scholar 

  29. M. B. Bever, D. L. Holt, and A. L. Titchener, Prog. Mater. Sci. 17 (1), 5 (1973).

    Article  Google Scholar 

  30. V. A. Pavlov, Physical Foundations of Metal Plastic Deformation (Izd-vo AN SSSR, Moscow, 1962), Chap. 5 [in Russian].

  31. Yu. K. Godovsky, Thermophysical Properties of Polymers (Springer, Berlin, 1993).

    Google Scholar 

  32. N. K. Balabaev, M. A. Mazo, A. V. Lyulin, and E. F. Oleinik, Polym. Sci., Ser. A 52 (6), 633 (2010).

    Article  Google Scholar 

  33. I. A. Strelnikov, N. K. Balabaev, M. A. Mazo, and E. F. Oleinik, Polym. Sci., Ser. A 56 (4), 511 (2014).

    Article  CAS  Google Scholar 

  34. M. A. Bol’shanina and V. E. Panin, in Proceedings of Tomsk State University, Tomsk, 1957 (Tomsk, 1957), p. 193.

    Google Scholar 

  35. Y. Q. Cheng, A. J. Cao, H. W. Sheng, and E. Ma, Acta Mater. 56 (18), 5263 (2008).

    Article  CAS  Google Scholar 

  36. V. A. Bernshtein and V. M. Egorov, Differential Scanning Calorimetry in Physics and Chemistry of Polymers (Khimiya, Leningrad, 1990), Chap. 6 [in Russian].

  37. E. F. Oleinik, Adv. Polym. Sci. 80 (1), 49 (1986).

    Article  CAS  Google Scholar 

  38. O. A. Hasan and V. C. Boyce, Polymer 34 (24), 5085 (1993).

    Article  CAS  Google Scholar 

  39. R. N. Haward, The Physics of Glassy Polymers, Ed. by R. N. Haward (Wiley, New York, 1973), p. 1.

  40. V. V. Bulatov and A. S. Argon, Modell. Simul. Mater. Sci. Eng. 2 (2), 203 (1994).

    Article  Google Scholar 

  41. V. V. Bulatov and A. S. Argon, Modell. Simul. Mater. Sci. Eng. 2 (2), 185 (1994).

    Article  Google Scholar 

  42. V. V. Bulatov and A. S. Argon, Modell. Simul. Mater. Sci. Eng. 2 (2), 167 (1994).

    Article  Google Scholar 

  43. J. C. M. Li, Polym. Eng. Sci. 24 (10), 750 (1984).

    Article  CAS  Google Scholar 

  44. F. Delogu, J. Alloys Compd. 513, 251 (1958).

    Article  Google Scholar 

  45. J. S. Lazurkin, J. Polym. Sci., Part A: Polym. Chem. 30 (121), 595 (1958).

    CAS  Google Scholar 

  46. R. E. Robertson, J. Chem. Phys. 44 (10), 3950 (1966).

    Article  Google Scholar 

  47. A. S. Argon, Encyclopedia of Material Science and Technology, Ed. by R. W. Cahn, P. Hansen, and E. J. Kramer (VCH Publ., Weinheim, 1993), Vol. 6, p. 461.

    CAS  Google Scholar 

  48. A. A. Pacheco and R. C. Batra, Polymer 54 (2), 819 (2013).

    Article  CAS  Google Scholar 

  49. A. S. Argon, P. H. Mott, and U. W. Suter, Phys. Status Solidi B 172 (1), 193 (1992).

    Article  CAS  Google Scholar 

  50. M. L. Falk and J. S. Langer, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57 (6), 7192 (1998).

    Article  CAS  Google Scholar 

  51. E. Bouchbinder, J. S. Langer, and I. Procaccia, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 75 (3), 036108 (2007).

    Article  Google Scholar 

  52. P. P. Kobeko, Amorphous Compounds (Izd-vo AN SSSR, Leningrad; Moscow, 1952) [in Russian].

    Google Scholar 

  53. A. S. Argon and M. I. Bessonov, Polym. Eng. Sci. 17 (3), 174 (1977).

    Article  CAS  Google Scholar 

  54. J. J. Gilman, Dislocation Dynamics, Ed. by A. R. Rosenfield, G. T. Hahn, A. L. Bement, and R. I. Jaffee (McGraw-Hill, New York, 1968), p. 3.

  55. J. J. Gilman, Physics of Strength and Plasticity, Ed. by A. S. Argon, (MIT Press, Cambridge, 1969), p. 3.

  56. A. S. Argon and H. Y. Kuo, Mater. Sci. Eng. 39 (1), 101 (1979).

    Article  Google Scholar 

  57. A. S. Argon and L. T. Shi, Philos. Mag. 46 (2), 275 (1982).

    Article  CAS  Google Scholar 

  58. A. S. Argon and L. T. Shi, Acta Metall. 31 (4), 499 (1983).

    Article  Google Scholar 

  59. M. L. Falk and C. E. Maloney, Eur. Phys. J. B 75 (4), 405 (2010).

    Article  CAS  Google Scholar 

  60. D. Rodney, A. Tanguy, and D. Vandembroucq, Modell. Simul. Mater. Sci. Eng. 19, 083001 (2011).

    Article  Google Scholar 

  61. P. Schall, D. A. Weitz, and F. Spaepen, Science 318 (5858), 1895 (2007).

    Article  CAS  Google Scholar 

  62. J. D. Eshelby, Proc. R. Soc. London, Ser. A 241 (1226), 376 (1957).

    Article  Google Scholar 

  63. Al. Al. Berlin, N. S. Grineva, G. G. Aleksanyan, Yu. P. Karpenko, and L. I. Manevich, Vysokomol. Soedin., Ser. A 28 (12), 2504 (1986).

    CAS  Google Scholar 

  64. A. S. Argon and M. J. Demkowicz, Philos. Mag. 86 (25–26), 4153 (2006).

    Article  CAS  Google Scholar 

  65. M. Hutnik, A. S. Argon, and U. W. Suter, Macromolecules 26 (5), 1097 (1993).

    Article  CAS  Google Scholar 

  66. A. S. Argon and M. J. Demkowicz, Metall. Mater. Trans. A 39 (8), 1762 (2008).

    Article  Google Scholar 

  67. V. S. Boiko, R. I. Gar’er, and A. M. Kosevich, Reversible Plasticity of Crystals (Nauka, Moscow, 1991) [in Russian].

    Google Scholar 

  68. S. L. Kuz’min and V. A. Likhachev, in Mechanics of Elastomers: Interuniversity Collection (Izd-vo Krasnodarskogo politekhn. un-ta, Krasnodar, 1980), Vol. 3, p. 88 [in Russian].

    Google Scholar 

  69. R. Dasgupta, H. George, E. Hentschel, and I. Procaccia, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys. 87 (2), 022810 (2013).

    Article  Google Scholar 

  70. P. M. Pakhomov, V. E. Korsukov, M. V. Shablygin, and I. I. Novak, Vysokomol. Soedin., Ser. A 26 (6), 1288 (1984).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. F. Oleinik.

Additional information

Original Russian Text © O.B. Salamatina, S.N. Rudnev, V.V. Shaposhnikova, A.P. Krasnov, O.V. Afonicheva, S.N. Salazkin, E.F. Oleinik, 2016, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2016, Vol. 58, No. 1, pp. 21–36.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamatina, O.B., Rudnev, S.N., Shaposhnikova, V.V. et al. Inelastic deformation of glassy polyaryleneetherketone: Energy accumulation and deformation mechanism. Polym. Sci. Ser. A 58, 18–32 (2016). https://doi.org/10.1134/S0965545X16010107

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X16010107

Keywords

Navigation