Skip to main content
Log in

Computer simulation of rearrangements in chains of glassy polymethylene subjected at low temperature inelastic deformation

  • Theory and Simulation
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Molecular dynamics simulation of glassy polymethylene (PM) plastic deformation is performed up to ɛ = 30% in uniaxial compression regime at a temperature of 50 K, which is ∼140 K below T g of the polymer. All atoms of PM chains are represented explisitly (all-atom model). Calculations were performed for two series of samples with different molecular mass distribution of chains: Samples have average degree of polymerization DP ≈ 212 with Mn ≈ 3000 and Mw ≈ 9500 (the first series) and DP ≈ 350, Mn ≈ 5000 and Mw ≈ 9500 (the second series). Each sample contains 12288 -CH2- monomeric units per computational sell. Nonaffine displacements of carbon atoms and conformational rearrangements in chains during deformation are visualized and analyzed. The transformation of relatively fragments of chains up to 16–20 monomer units length are basic structural units, non-conformational displacements of which controls plastic process. Relatively large nonaffine displacements are observed even in the range of low strains, which are usually interpreted as Hookean strains. In the range of yield tooth and steady plastic flow, the number of these displacements increases along with their amplitude. Conformational set of PM chains does not show a serious change during deformation. Analysis had shown that the number of conformational rearrangements of trans-gauche type in PM chains during deformation is small and such rearrangements do not play decisive role in the considered range of PM plasticity, even at ɛ > 15%, at the stage of the developed plastic flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. S. Argon, The Physics of Deformation and Fracture of Polymers (Cambridge Univ. Press, New York, 2013).

    Book  Google Scholar 

  2. R. Dasgupta, H. George, E. Hentschel, and I. Procaccia, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 87, 022810 (2013).

    Article  Google Scholar 

  3. L. Berthier, Physics 4, 42 (2011).

    Article  Google Scholar 

  4. S. Lee and G. C. Rutledge, Macromolecules 44, 3096 (2011).

    Article  CAS  Google Scholar 

  5. M. L. Falk and C. E. Maloney, Eur. Phys. J. B 75, 405 (2010).

    Article  CAS  Google Scholar 

  6. A. S. Argon and M. J. Demkowicz, Philos. Mag. 86, 4153 (2006).

    Article  CAS  Google Scholar 

  7. A. A. Pacheco and R. C. Batra, Polymer 54, 819 (2013).

    Article  CAS  Google Scholar 

  8. I. A. Strel’nikov, N. K. Balabaev, M. A. Mazo, and E. F. Oleinik, Vysokomol. Soedin., Ser. A 56, 45 (2014).

    Google Scholar 

  9. R. S. Hoy, J. Polym. Sci., Part B: Polym. Phys. 49, 979 (2011).

    Article  CAS  Google Scholar 

  10. N. K. Balabaev, M. A. Mazo, A. V. Lyulin, and E. F. Oleinik, Polym. Sci., Ser. A 52, 633 (2010).

    Article  Google Scholar 

  11. J.-L. Barrat, J. Baschnagel, and A. Lyulin, Soft Matter 6, 3430 (2010).

    Article  CAS  Google Scholar 

  12. R. A. Riggleman, H.-N. Lee, M. D. Ediger, and J. J. De Pablo, Soft Matter 6, 287 (2010).

    Article  CAS  Google Scholar 

  13. D. Hossain, M. A. Tschopp, D. K. Ward, J. L. Bouvard, P. Wang, and M. F. Horstemeyer, Polymer 51, 6071 (2010).

    Article  CAS  Google Scholar 

  14. J. Rottler, J. Phys.: Condens. Matter 21, 463101 (2009).

    Google Scholar 

  15. B. Vorselaars, A. V. Lyulin, and M. A. J. Michels, J. Chem. Phys. 130, 074905 (2009).

    Article  Google Scholar 

  16. G. J. Papakonstantopoulos, R. A. Riggleman, J.-L. Barrat, and J. J. De Pablo, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 77, 041502 (2008).

    Article  Google Scholar 

  17. A. V. Lyulin, B. Vorselaars, M. A. Mazo, N. K. Balabaev, and M. A. J. Michels, Europhys. Lett. 71, 618 (2005).

    Article  CAS  Google Scholar 

  18. A. V. Lyulin, N. K. Balabaev, M. A. Mazo, and M. A. J. Michels, Macromolecules 37, 8785 (2004).

    Article  CAS  Google Scholar 

  19. F. M. Capaldi, M. C. Boyce, and G. C. Rutledge, Polymer 45, 1391 (2004).

    Article  CAS  Google Scholar 

  20. D. N. Theodorou and U. W. Suter, Macromolecules 19, 379 (1986).

    Article  CAS  Google Scholar 

  21. M. Hutnik, A. S. Argon, and U. W. Suter, Macromolecules 26, 1097 (1993).

    Article  CAS  Google Scholar 

  22. A. S. Argon, P. H. Mott, and U. W. Suter, Phys. Status Solidi B 172, 193 (1992).

    Article  CAS  Google Scholar 

  23. V. A. Kargin, Selected Works. The Problems of Polymer Science (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  24. A. S. Argon, Philos. Mag. 28, 939 (1973).

    Article  Google Scholar 

  25. P. M. Pakhomov, V. E. Korsukov, M. V. Shablygin, and I. I. Novak, Vysokomol. Soedin., Ser. A 26, 1288 (1984).

    CAS  Google Scholar 

  26. H. Siesler, Adv. Polym. Sci. 65, 1 (1984).

    Article  CAS  Google Scholar 

  27. Paitner, P., Coleman, M., and Koenig, J., Vibrational Spectroscopy and Its Application to Polymeric Materials (Wiley, New York, 1982).

    Google Scholar 

  28. M. Utz, A. S. Atallah, P. Robyr, A. H. Widmann, R. R. Ernst, and U. W. Suter, Macromolecules 32, 6191 (1999).

    Article  CAS  Google Scholar 

  29. D. K. Mahajan, R. Estevez, and S. Basu, J. Mech. Phys. Sol. 58, 1474 (2010).

    Article  CAS  Google Scholar 

  30. V. Bulatov and A. Argon, Model. Simul. Mater. Sci. Eng. 2, 167 (1994).

    Article  Google Scholar 

  31. V. Bulatov and A. Argon, Model. Simul. Mater. Sci. Eng. 2, 185 (1994).

    Article  Google Scholar 

  32. V. Bulatov and A. Argon, Model. Simul. Mater. Sci. Eng. 2, 203 (1994).

    Article  Google Scholar 

  33. E. Bouchbinder, J. C. Langer, and I. Procaccia, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 75, 036108 (2007).

    Article  Google Scholar 

  34. D. Rodney, A. Tangu, and D. Vandembroucq, Model. Simul. Mater. Sci. Eng. 19, 083001 (2011).

    Article  Google Scholar 

  35. M. L. Falk and J. S. Langer, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 7192 (1998).

    Article  CAS  Google Scholar 

  36. M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).

    Google Scholar 

  37. A. S. Lemak and N. K. Balabaev, Mol. Simul. 15, 223 (1995).

    Article  CAS  Google Scholar 

  38. H. J. C. Berendsen, J. P. M. Postma, W. F. Gunsteren, A. Di Nola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  CAS  Google Scholar 

  39. S. J. Weiner, P. A. Kollman, D. A. Case, U. C. Singh, C. Ghio, and G. Alagona, J. Am. Chem. Soc. 106, 765 (1984).

    Article  CAS  Google Scholar 

  40. J. Perez, Physics and Mechanics of Amorphous Polymers (Balkema, Rotterdam, 1998).

    Google Scholar 

  41. N. Bailey, J. Schiotz, and K. Jacobsen, Phys. Rev. B: Condens. Matter 73, 064108 (2006).

    Article  Google Scholar 

  42. Y. Shi and M. Falk, Phys. Rev. B: Condens. Matter 73, 214201 (2006).

    Article  Google Scholar 

  43. Y. Q. Cheng, A. J. Cao, H. W. Sheng, and E. Ma, Acta Mater. 56, 5263 (2008).

    Article  CAS  Google Scholar 

  44. A. S. Argon, Acta. Metall. 27, 47 (1979).

    Article  CAS  Google Scholar 

  45. E. F. Oleinik, S. N. Rudnev, O. B. Salamatina, and M. I. Kotelyanskii, Polym. Sci., Ser. A 50, 494 (2008).

    Article  Google Scholar 

  46. R. E. Robertson, J. Chem. Phys. 44, 3950 (1966).

    Article  Google Scholar 

  47. B. Crist, in Material Science Technology, Ed. by R. Cahn, P. Haasen, and E. J. Kramer (VCH, Weinheim, 1995), Vol. 12.

  48. R. R. Luise and I. V. Yannas, in Computation Modeling of Polymers, Ed. by J. Biserano (Marcel Dekker, New York, 1992).

  49. O. V. Gendel’man and L. I. Manevich, JETP 83(1), 155 (1996).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Mazo.

Additional information

Original Russian Text © I.A. Strelnikov, M.A. Mazo, N.K. Balabaev, E.F. Oleinik, 2014, published in Vysokomolekulyarnye Soedineniya. Ser. A, 2014, Vol. 56, No. 4, pp. 427–438.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Strelnikov, I.A., Mazo, M.A., Balabaev, N.K. et al. Computer simulation of rearrangements in chains of glassy polymethylene subjected at low temperature inelastic deformation. Polym. Sci. Ser. A 56, 511–521 (2014). https://doi.org/10.1134/S0965545X14030158

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X14030158

Keywords

Navigation