Skip to main content
Log in

Effect of montmorillonite treatment with supercritical CO2 on the morphology and properties of polypropylene nanocomposites

  • Composites
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The effects of montmorillonite (MMT) treatment with supercritical carbon dioxide (SC-CO2) on clay morphology and the properties of polypropylene nanocomposites were investigated by wide-angle X-ray diffraction, transmission electron microscopy, scanning electron microscopy, dynamic mechanical analysis, and differential scanning calorimetry. The use of poly(propylene glycol) (PPG) was evaluated. The results showed that the MMT morphology (structure formation, dispersion, and orientation) was affected by treatment with SC-CO2, and the use of PPG, or the use of CO2 in the liquid state. Consequently, different reinforcement measurements were obtained. The relationship between structure and properties was reported.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Ray and M. Okamoto, Prog. Polym. Sci. 28, 1539 (2003).

    Article  CAS  Google Scholar 

  2. M. Alexandre and P. Dubois, Mater. Sci. Eng. 28, 63 (2000).

    Article  Google Scholar 

  3. F. Hussain, M. Hojatti, M. Okamoto, and R. Gorga, J. Compos. Mater. 40, 1511 (2006).

    Article  CAS  Google Scholar 

  4. M. Okamoto, Mater. Sci. Technol. 22, 777 (2006).

    Article  Google Scholar 

  5. L. J. Lee, C. Zeng, X. Cao, X. Han, J. Shen, and G. Xu, Compos. Sci. Technol. 65, 2344 (2005).

    Article  CAS  Google Scholar 

  6. S. G. Lei, S. V. Hoa, and T. Ton-That, Compos. Sci. Technol. 66, 1274 (2006).

    Article  CAS  Google Scholar 

  7. L. B. Paiva, A. R. Morales, and T. R. Guimares, Mater. Sci. Eng. A 447, 261 (2007).

    Article  Google Scholar 

  8. J. H. Kim, C. M. Koo, Y. S. Choi, K. H. Wang, and J. J. Chung, Polymer 45, 719 (2004).

    Google Scholar 

  9. P. Maiti, N. H. Nam, and M. Okamoto, Macromolecules 3, 2042 (2002).

    Article  Google Scholar 

  10. F. Perrin-Sarazin, M. T. Ton-That, M. N. Bureau, and J. Denault, Polymer 46, 11624 (2005).

    Article  CAS  Google Scholar 

  11. L. Százdi, B. Pukánszky, G. J. Vancso, and B. Pukánszky, Polymer 47, 4638 (2006).

    Article  Google Scholar 

  12. E. Manias, A. Touny, L. Wu, K. Strawhecker, B. Lu, and T. C. Chung, Chem. Mater. 13, 3516 (2001).

    Article  CAS  Google Scholar 

  13. P. C. LeBaron, Z. Wang, and T. J. Pinnavaia, Appl. Clay Sci. 15, 11 (1999).

    Article  CAS  Google Scholar 

  14. J. W. Lee, Y. T. Lim, and O. Park, Polym. Bull. (Berlin) 45, 191 (2000).

    Article  CAS  Google Scholar 

  15. C. Ding, D. Jia, H. He, B. Guo, and H. Hong, Polym. Test. 24, 94 (2005).

    Article  CAS  Google Scholar 

  16. K. Krump, A. S. Luyt, and I. Hudec, Mater. Lett. 60, 2877 (2006).

    Article  CAS  Google Scholar 

  17. C. M. Koo, S. O. Kim, and J. Chung, Macromolecules 36, 2748 (2003).

    Article  CAS  Google Scholar 

  18. R. A. Vaia, G. Price, P. N. Ruth, H. T. Nguyen, and J. Lichtenhan, Appl. Clay Sci. 15, 67 (1999).

    Article  CAS  Google Scholar 

  19. S. P. Nalawade, F. Picchioni, and L. P. M. Janssen, Prog. Polym. Sci. 31, 19 (2006).

    Article  CAS  Google Scholar 

  20. D. L. Tomasko, X. Han, D. Liu, and W. Gao, Curr. Opin. Solid State Mater. Sci. 7, 407 (2003).

    Article  CAS  Google Scholar 

  21. P. Svoboda, K. Trivedi, D. Svobodova, K. Kolomaznik, and T. Lee, Polym. Test. 31, 444 (2012).

    Article  CAS  Google Scholar 

  22. E. Naveau, C. Calberg, C. Detrembleura, C. Jrme, and M. Alexandre, Appl. Clay Sci. 51, 467 (2011).

    Article  CAS  Google Scholar 

  23. Y. Haldoraia, J. Shima, and K. Limc, J. Supercrit. Fluids 45, 71 (2012).

    Google Scholar 

  24. C. Chen and D. Baird, Polymer 53, 4178 (2012).

    Article  CAS  Google Scholar 

  25. K. S. Morley, P. C. Marr, P. B. Webb, A. R. Berry, F. J. Allison, G. Moldovan, P. D. Brown, and S. M. Howdle, J. Mater. Chem. 12, 1898 (2002).

    Article  CAS  Google Scholar 

  26. M. F. Mendes and G. L. V. Coelho, Adsorption 11, 139 (2005).

    Article  CAS  Google Scholar 

  27. T. P. Shi, K. Yao, S. Nishimura, Y. Imai, N. Yamada, and E. Abe, Chem. Lett. 31, 440 (2002).

    Article  Google Scholar 

  28. Q. Zhao and E. T. Samulski, Macromolecules 36, 6967 (2003).

    Article  CAS  Google Scholar 

  29. R. Ishii, H. Wada, and K. Ooi, J. Colloid Interface Sci. 254, 250 (2002).

    Article  CAS  Google Scholar 

  30. G. K. Serhatkulu, D. Dilek, and E. Gulari, J. Supercrit. Fluids 39, 264 (2006).

    Article  CAS  Google Scholar 

  31. Q. T. Nguyen and D. G. Baird, Polymer 48, 6923 (2007).

    Article  CAS  Google Scholar 

  32. S. Horsch, G. K. Serhatkulu, E. Gulari, and R. M. Kannan, Polymer 47, 7485 (2006).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. S. Mauler.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Furlan, L.G., Liberman, S.A., Oviedo, M.A.S. et al. Effect of montmorillonite treatment with supercritical CO2 on the morphology and properties of polypropylene nanocomposites. Polym. Sci. Ser. A 56, 83–89 (2014). https://doi.org/10.1134/S0965545X13090071

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X13090071

Keywords

Navigation