Skip to main content
Log in

Protein microparticles with controlled stability prepared via layer-by-layer adsorption of biopolyelectrolytes

  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

This review covers the experimental data on the preparation and characterization of protein microparticles with controlled stability that are formed by layer-by-layer adsorption of oppositely charged macromolecules. Variants of using proteins as adsorbed polyelectrolyes, methods of incorporating proteins into matrixes (aggregates and microspheres) for further deposition of biopolyelectrolytes, and immobilization of proteins in preformed multilayered polyelectrolyte particles due to a change in the permeability of their shells are considered. Special attention is given to biocompatible and biodegradable microparticles characterized by depot functions, that is, the ability to reliably protect biologically active compounds from aggregative media of the body and to quantitatively release protein preparations (hormones, enzymes, and peptides) into solution when a certain acidity of solution is attained. This feature is especially important for designing peroral means of protein delivery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. D. Putner and P. A. Burke, Nature Biotechnol. 16, 153 (1998).

    Article  Google Scholar 

  2. B. Shankar, Oral Drug Delivery 1, 20 (2007).

    Google Scholar 

  3. A. K. Pavlou and J. M. Reichert, Nature Biotechnol. 22, 1513 (2004).

    Article  CAS  Google Scholar 

  4. R. K. Iler, J. Colloid Interface Sci. 21, 569 (1966).

    Article  CAS  Google Scholar 

  5. G. Decher, J. D. Hong, and J. Schmitt, Thin Solid Films 210–211, 831 (1992).

    Article  Google Scholar 

  6. G. Decher, Science (Washington, D. C.) 277, 1232 (1997).

    Article  CAS  Google Scholar 

  7. S. A. Sukhishvili and S. Granick, J. Am. Chem. Soc. 122, 9550 (2000).

    Article  CAS  Google Scholar 

  8. E. Donath, G. B. Sukhorukov, F. Caruso, S. A. Davis, and H. Möhwald, Angew. Chem., Int. Ed. Engl. 37, 2201 (1998).

    Article  Google Scholar 

  9. F. Caruso, R. A. Caruso, and H. Möhwald, Science (Washington, D. C.) 282, 1111 (1998).

    Article  CAS  Google Scholar 

  10. C. Peyratout and L. Dahne, Angew. Chem. 43, 3762 (2004).

    Article  CAS  Google Scholar 

  11. W. Tong and C. Gao, J. Mater. Chem. 18, 3799 (2008).

    Article  CAS  Google Scholar 

  12. L. L. Mercato, P. Rivera-Gil, A. Z. Abbasi, M. Ochs, C. Ganas, I. Zins, C. Sönnichsen, and W. J. Parak, Nanoscale 2, 458 (2010).

    Article  Google Scholar 

  13. A. L. Becker, A. P. R. Johnston, and F. Caruso, Small 6, 836 (2010).

    Google Scholar 

  14. Y. Wang, L. Hosta-Rigau, H. Lomas, and F. Caruso, Phys. Chem. Chem. Phys. 13, 4782 (2011).

    Article  CAS  Google Scholar 

  15. K. Ariga, Q. M. Ji, and J. P. Hill, Adv. Polym. Sci. 229, 51 (2010).

    Article  CAS  Google Scholar 

  16. B. G. De Geest, S. De Koker, G. B. Sukhorukov, O. Kreft, W. J. Parak, A. G. Skirtach, J. Demeester, S. C. De Smedt, and W. E. Hennink, Soft Matter 5, 282 (2009).

    Article  Google Scholar 

  17. L. J. De Cock, S. De Koker, B. G. De Geest, J. Grooten, C. Vervaet, J. P. Remon, G. B. Sukhorukov, and M. N. Antipina, Angew. Chem., Int. Ed. Engl. 49, 6954 (2010).

    Article  Google Scholar 

  18. S. De Koker, L. J. De Cock, P. Rivera-Gil, W. J. Parak, Velty R. Auzély, C. Vervaet, J. P. Remon, J. Grooten, and B. G. De Geest, Adv. Delivery Rev. 63, 748 (2011).

    Article  Google Scholar 

  19. G. K. Such, A. P. R. Johnston, and F. Caruso, Chem. Soc. Rev. 40, 19 (2011).

    Article  CAS  Google Scholar 

  20. Y. Lvov, K. Ariga, I. Ichinose, and T. Kunitake, J. Am. Chem. Soc. 117, 6117 (1995).

    Article  CAS  Google Scholar 

  21. F. Caruso and C. Schüler, Langmuir 16, 9595 (2000).

    Article  CAS  Google Scholar 

  22. D. B. Shenoy, A. A. Antipov, G. B. Sukhorukov, and H. Möhwald, Biomacromolecules 4, 265 (2003).

    Article  CAS  Google Scholar 

  23. W. Jin, S. Xiangyang, and F. Caruso, J. Am. Chem. Soc. 123, 8121 (2001).

    Article  CAS  Google Scholar 

  24. Y. M. Lvov, P. Pattekar, X. Zhang, and V. Torchilin, Langmuir 27, 1212 (2011).

    Article  CAS  Google Scholar 

  25. A. Antipov, D. Shchukin, Y. Fedutik, I. Zanaveskina, V. Klechkovskaya, G. B. Sukhorukov, and H. Möhwald, Macromol. Rapid Commun. 24, 274 (2003).

    Article  CAS  Google Scholar 

  26. D. V. Volodkin, N. I. Larionova, and G. B. Sukhorukov, Biomacromolecules 5, 1962 (2004).

    Article  CAS  Google Scholar 

  27. A. I. Petrov, D. V. Volodkin, and G. B. Sukhorukov, Biotechnol. Prog. 21, 918 (2005).

    Article  CAS  Google Scholar 

  28. A. M. Yu, Y. Wang, E. Barlow, and F. Caruso, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 17, 1737 (2005).

    Article  CAS  Google Scholar 

  29. Y. Wang and F. Caruso, Chem. Mater. 18, 4089 (2006).

    Article  CAS  Google Scholar 

  30. D. I. Gittins and F. Caruso, J. Phys. Chem. B 105, 6846.

  31. E. Donath, S. Moya, D. Neu, G. B. Sukhorukov, R. Georgieva, A. Voigt, H. Bäumler, H. Kiesewetter, and H. Möhwald, Appl. Chem. Eur. 8, 5481 (2002).

    Article  CAS  Google Scholar 

  32. R. Georgieva, S. Moya, M. Hin, R. Mitlohner, E. Donath, H. Kiesewetter, H. Möhwald, and H. Bäumle, Biomacromolecules 3, 517 (2002).

    Article  CAS  Google Scholar 

  33. V. S. Trubetskoy, A. Loomis, J. E. Hagstrom, V. G. Budker, and J. A. Wolff, Nucleic Acids Res. 27, 3090 (1999).

    Article  CAS  Google Scholar 

  34. D. G. Shchukin, A. A. Patel, G. B. Sukhorukov, and Y. M. Lvov, J. Am. Chem. Soc. 126, 3374 (2004).

    Article  CAS  Google Scholar 

  35. N. G. Balabushevich, G. V. Sukhorukov, and N. I. Larionova, Vestn. Mosk. Univ., Ser. 2: Khim. 43, 370 (2002).

    Google Scholar 

  36. C. Y. Gao, X. Y. Liu, J. C. Shen, and H. Möhwald, Chem. Commun., No. 17, 1928 (2002).

  37. N. G. Balabushevich, O. P. Tiourina, D. V. Volodkin, N. I. Larionova, and G. B. Sukhorukov, Biomacromolecules 4, 1191 (2003).

    Article  CAS  Google Scholar 

  38. D. V. Volod’kin, Candidate’s Dissertation in Chemistry (Moscow State Univ., Moscow, 2005).

    Google Scholar 

  39. O. P. Tiourina and G. B. Sukhorukov, Int. J. Pharm. 242, 155 (2002).

    Article  CAS  Google Scholar 

  40. N. G. Balabushevich and N. I. Larionova, Biokhimiya (Moscow) 69, 930 (2004).

    Google Scholar 

  41. N. I. Larionova and N. G. Balabushevich, RF Patent No. 2?300 369.

  42. A. Kolbe, L. L. Mercato, A. Z. Abbas, P. R. Gi, S. J. Gorzini, W. H. C. Huibers, B. Poolman, and W. J. Parak, Macromol. Rapid Commun. 32, 186 (2011).

    Article  CAS  Google Scholar 

  43. S. F. Hou, J. H. Wang, and C. R. Martin, Nano Lett. 5, 231 (2005).

    Article  CAS  Google Scholar 

  44. L. Duan, Q. He, X. H. Yan, Y. Cui, K. W. Wang, and J. B. Li, Biochem. Biophys. Res. Commun. 354, 357 (2007).

    Article  CAS  Google Scholar 

  45. W. Qi, X. Yan, L. Duan, Y. Cui, Y. Yang, and J. Li, Biomacromolecules 10, 1212 (2009).

    Article  CAS  Google Scholar 

  46. W. Qi, L. Duan, and J. Li, Soft Matter 7, 1571 (2011).

    Article  CAS  Google Scholar 

  47. J. Zhao, Y. Cui, A. Wang, J. Fei, Y. Yang, and L. Junbai, Langmuir 27, 1499 (2011).

    Article  CAS  Google Scholar 

  48. W. Jin, S. Xiangyang, and F. Caruso, J. Am. Chem. Soc. 123, 8121 (2001).

    Article  CAS  Google Scholar 

  49. Z. F. Dai, A. Heilig, E. Donath, and H. Möhwald, Chem.-Eur. J. A 10, 6369 (2004).

    Article  CAS  Google Scholar 

  50. M. E. Bobreshova, G. B. Sukhorukov, E. A. Saburova, L. I. Efimova, B. I. Sukhorukov, and L. I. Sharabshina, Biofizika 44, 813 (1999).

    CAS  Google Scholar 

  51. N. G. Balabushevitch, G. B. Sukhorukov, N. A. Moroz, N. I. Larionova, D. V. Volodkin, E. Donath, and H. Möhwald, Biotechnol. Bioeng. 76, 207 (2001).

    Article  CAS  Google Scholar 

  52. D. V. Volod’kin, N. G. Balabushevich, G. B. Sukhorukov, and N. I. Larionova, Biokhimiya (Moscow) 68, 283 (2003).

    Google Scholar 

  53. D. V. Volodkin, N. G. Balabushevitch, G. B. Sukhorukov, and N. I. Larionova, STP Pharma Sci. 13, 163 (2003).

    CAS  Google Scholar 

  54. N. G. Balabushevich, G. A. Vikhoreva, E. V. Mikhal’chik, and N. I. Larionova, Vestn. Mosk. Univ., Ser. 2: Khim. 51, 178 (2010).

    CAS  Google Scholar 

  55. N. G. Balabushevich, V. A. Izumrudov, I. N. Zorov, and N. I. Larionova, Biofarm. Zh. 2, 35 (2010).

    CAS  Google Scholar 

  56. N. G. Balabushevich, M. A. Pechenkin, I. N. Zorov, E. D. Shibanova, and N. I. Larionova, Biokhimiya (Moscow) 76 (2011).

  57. Y. F. Fan, Y. N. Wang, Y. G. Fan, and J. B. Ma, Int. J. Pharm. 324, 158 (2006).

    Article  CAS  Google Scholar 

  58. J. Zheng, X. Yue, Z. Dai, Y. Wang, S. Liu, and X. Yan, Acta Biomater. 5, 1499 (2009).

    Article  CAS  Google Scholar 

  59. W. Qi, X. Yan, J. Fei, A. Wang, Y. Cui, and L. Junbai, Biomaterials 30, 2799 (2009).

    Article  CAS  Google Scholar 

  60. N. Kamia and A. M. Klibanov, Biotechnol. Bioeng. 82, 591 (2003).

    Google Scholar 

  61. C. L. Cooper, P. L. Dubin, A. B. Kayitmazer, and S. Turksen, Curr. Opin. Colloid Interface Sci. 10, 52 (2005).

    Article  CAS  Google Scholar 

  62. N. G. Balabushevich, O. V. Lebedeva, O. I. Vinogradova, and N. I. Larionova, J. Drug Delivery Sci. Technol. 16, 315 (2006).

    CAS  Google Scholar 

  63. M. A. Pechenkin, N. G. Balabushevich, I. N. Zorov, L. K. Staroseltseva, E. V. Mikhalchik, V. A. Izumrudov, and N. I. Larionova, J. Bioequiv. Bioavailab. 3, 244 (2011) (http://dx.doi.org/10.4172/jbb.1000094).

    CAS  Google Scholar 

  64. R. Srivastava, J. Q. Brown, H. Zhu, and M. J. McShane, Macromol. Biosci. 5, 717 (2005).

    Article  CAS  Google Scholar 

  65. R. Srivastava, J. Q. Brown, H. Zhu, and M. J. McShane, Biotechnol. Bioeng. 91, 124 (2005).

    Article  CAS  Google Scholar 

  66. B. G. De Geest, C. Dejugnat, M. Prevot, G. B. Sukhorukov, J. Demeester, and S. C. De Smedt, Adv. Funct. Mater. 17, 531 (2007).

    Article  Google Scholar 

  67. M. J. McShane, Methods Mol. Biol. (Totowa, N. J.) 679, 147 (2011).

    Article  CAS  Google Scholar 

  68. H. Bäumler and R. Georgieva, Biomacromolecules 11, 1480 (2010).

    Article  Google Scholar 

  69. S. D. De Kokker, T. Naessens, B. G. De Geest, P. Bogaert, J. Demeester, S. De Smedt, and J. Grooten, J. Immunol. 184, 203 (2010).

    Article  Google Scholar 

  70. S. De Kokker, B. N. Lambrecht, M. A. Willart, Y. Kooyk, J. Grooten, C. Vervaet, J. P. Remon, and B. G. De Geest, Chem. Soc. Rev. 40, 320 (2011).

    Article  Google Scholar 

  71. M.-L. Temmerman, Rejman, J. Grooten, T. De Beer, C. Vervaet, J. Demeester, and S. C. De Smedt, Pharm. Res. 28, 1765 (2011).

    Article  Google Scholar 

  72. Z. She, M. N. Antipina, J. Li, and G. B. Sukhorukov, Biomacromolecules 11, 1241 (2010).

    Article  CAS  Google Scholar 

  73. M. Delcea, H. Mohwald, and A. G. Skirtach, Adv. Drug. Delivery Rev. 63, 730 (2011).

    Article  CAS  Google Scholar 

  74. Y. Lvov, A. Antipov, A. Mamedov, H. Möhwald, and G. Sukhorukov, Nano Lett. 1, 125 (2001).

    Article  CAS  Google Scholar 

  75. O. P. Tiourina, A. A. Antipov, G. B. Sukhorukov, N. I. Larionova, Y. Lvov, and H. Möhwald, BioScience 1, 209 (2001).

    CAS  Google Scholar 

  76. N. G. Balabushevich, E. P. Zimina, and N. I. Larionova, Biokhimiya (Moscow) 69, 937 (2004).

    Article  Google Scholar 

  77. Y. Itoh, M. Matsusaki, T. Kida, and M. Akashi, Biomacromolecules 9, 2202 (2008).

    Article  CAS  Google Scholar 

  78. N. G. Balabushevich, G. B. Sukhorukov, and N. I. Larionova, Macromol. Rapid Commun. 26, 1168 (2005).

    Article  CAS  Google Scholar 

  79. N. G. Balabushevich and N. I. Larionova, J. Microencapsul. 26, 571 (2009).

    Article  CAS  Google Scholar 

  80. Q. Zhao and B. Li, Nanomed.: Nanotechnol. Biol. Med. 4, 302 (2008).

    Article  CAS  Google Scholar 

  81. Y. Itoh, M. Matsusaki, T. Kida, and M. Akashi, Biomacromolecules 7, 2715 (2006).

    Article  CAS  Google Scholar 

  82. Y. Itoh, M. Matsusaki, T. Kida, and M. Akashi, Chem. Lett. 37, 238 (2008).

    Article  CAS  Google Scholar 

  83. H. Lee, Y. Jeong, and T. G. Park, Biomacromolecules 8, 3705 (2007).

    Article  CAS  Google Scholar 

  84. P. Rivera-Gil, S. De Koker, B. G. De Geest, and W. J. Parak, Nano Lett. 9, 4398 (2009).

    Article  CAS  Google Scholar 

  85. B. G. De Geest, R. E. Vandenbroucke, A. M. Guenther, G. B. Sukhorukov, W. E. Hennink, N. N. Sanders, J. Demeester, and S. C. De Smedt, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 18, 1005 (2006).

    Article  Google Scholar 

  86. T. Borodina, E. Markvicheva, S. Kunizhev, H. Möhwald, G. B. Sukhorukov, and O. Kreft, Macromol. Rapid Commun. 28, 1894 (2007).

    Article  CAS  Google Scholar 

  87. M. A. Krayukhina, N. A. Samoilova, A. S. Erofeev, and I. A. Yamskov, Polymer Science, Ser. A 52, 243 (2010) [Vysokomol. Soedin., Ser. A 52, 394 (2010)].

    Article  Google Scholar 

  88. M. Yu. Gorshkova, I. F. Volkova, and V. A. Izumrudov, Polymer Science, Ser. A 52, 368 567 (2010) [Vysokomol. Soedin., Ser. A 52, 567 (2010)].

    Article  Google Scholar 

  89. M. Yu. Gorshkova, I. F. Volkova, S. G. Alekseeva, N. N. Molotkova, E. E. Skorikova, and V. A. Izumrudov, Polymer Science, Ser. A 53, 57 (2011) [Vysokomol. Soedin., Ser. A 53, 60 (2011)].

    Article  CAS  Google Scholar 

  90. N. P. Yevlampieva, M. Yu. Gorshkova, I. F. Volkova, E. S. Grigoryan, A. A. Lezov, A. P. Khurchak, and E. I. Ryumtsev, Polymer Science, Ser. A 53, 124 (2011) [Vysokomol. Soedin., Ser. A 53, 515 (2011)].

    Article  CAS  Google Scholar 

  91. V. A. Izumrudov, I. F. Volkova, E. S. Grigoryan, and M. Yu. Gorshkova, Polymer Science, Ser. A 53, 281 (2011) [Vysokomol. Soedin., Ser. A 53, 515 (2011)].

    Article  CAS  Google Scholar 

  92. V. A. Izumrudov and M. V. Zhiryakova, Polymer Science, Ser. A 53, 441 (2011) [Vysokomol. Soedin., Ser. A 53, 835 (2011)].

    Article  CAS  Google Scholar 

  93. N. Yu. Kostina, M. Yu. Gorshkova, and V. A. Izumrudov, Polymer Science, Ser. A 53, 947 (2011) [Vysokomol. Soedin., Ser. A 53, 1767 (2011)].

    Article  CAS  Google Scholar 

  94. L. J. De Cock, J. Lenoir, S. De Koker, V. Vermeersch, A. G. Skirtach, P. Dubruel, E. Adriaens, C. Vervaet, J. P. Remon, and B. G. De Geest, Biomaterials 32, 1967 (2011).

    Article  Google Scholar 

  95. Z. H. An, K. Kavanoor, M. L. Choy, and L. J. Kaufman, Colloids Surf. 70, 114 (2009).

    Article  CAS  Google Scholar 

  96. D. Cui, J. Jing, T. Boudou, I. Pignot-Paintrand, S. De Koker, B. G. De Geest, C. Picart, and R. Auzély-Velty, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 23, 200 (2011).

    Article  Google Scholar 

  97. B. Städler, A. D. Price, R. Chandrawati, L. Hosta-Rigau, A. N. Zelikin, and F. Caruso, Nanoscale 1, 68 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Balabushevich.

Additional information

Original Russian Text © N.G. Balabushevich, V.A. Izumrudov, N.I. Larionova, 2012, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2012, Vol. 54, No. 7, pp. 1116–1129.

This work was supported by the Russian Foundation for Basic Research (project no. 10-03-00019-a) and the Fund of the Ministry of Education and Science of the Russian Federation (State contract 11.G34.31.0004).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balabushevich, N.G., Izumrudov, V.A. & Larionova, N.I. Protein microparticles with controlled stability prepared via layer-by-layer adsorption of biopolyelectrolytes. Polym. Sci. Ser. A 54, 540–551 (2012). https://doi.org/10.1134/S0965545X12040098

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X12040098

Keywords

Navigation