Skip to main content
Log in

Rheology of liquid-crystalline solutions of hydroxylpropyl cellulose filled with layered silicate particles

  • Rheology
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The rheological properties of nanocomposites with an anisotropic matrix are systematically studied. As a matrix, a 60% solution of hydroxypropyl cellulose in PEG is used. In accordance with the phase diagram, it demonstrates the LC-isotropic-state transition along the temperature scale. The solution is filled with Na-montmorillonite particles (1.0–7.5%). The rheological characteristics of solutions under steady-state shear flow, periodic (harmonic) oscillations with different amplitudes, and uniaxial extension at the constant stretching rate are investigated. Experiments are performed at various temperatures, and the properties of the system are compared with the phase state of the matrix. The viscoelastic properties of the material are described by a model with a single relaxation time. The abnormal behavior of the storage modulus in the low-frequency range is observed. When the matrix is transformed into the LC state, the yield point becomes well-defined and the shear viscosity abruptly increases with an increase in the content of the LC phase. The above-described effects are discussed in terms of the ideas that two competing structures exist in the system, one of which is formed by the LC domains of solution, while the other structure is based on the nanofiller capable of forming ordered structures. Deformation, especially longitudinal flow, facilitates self-organization of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. G. Kulichikhin, in Liquid Crystalline Polymers, Ed. by N. A. Platé (Khimiya, Moscow, 1988), p. 331.

    Google Scholar 

  2. A. Ya. Malkin, N. V. Vasil’eva, T. A. Belousova, and V. G. Kulichikhin, Kolloidn. Zh. 61, 200 (1979).

    Google Scholar 

  3. V. S. Volkov, A. K. Tereshin, and V. G. Kulichikhin, Polymer Science, Ser. A 46, 1141 (2004) [Vysokomol. Soedin., Ser. A 46, 1875 (2004)].

    Google Scholar 

  4. V. G. Kulichikhin, O. V. Vasil’eva, I. A. Litvinov, et al., Dokl. Akad. Nauk SSSR 309, 1161 (1989).

    CAS  Google Scholar 

  5. T. D. Fornes and D. R. Paul, Macromolecules 37, 7698 (2004).

    Article  CAS  Google Scholar 

  6. X. Liu and Q. Wu, Polymer 42, 10013 (2001).

    Article  CAS  Google Scholar 

  7. J. W. Cho and D. R. Paul, Polymer 42, 1083 (2001).

    Article  CAS  Google Scholar 

  8. E. P. Giannelis, Adv. Mater. (Weinheim, Fed. Repub. Ger.) 8, 29 (1996).

    Article  CAS  Google Scholar 

  9. K. H. Jung, B. C. Kim, W. G. Huhm, and T. Kitutani, Int. Polym. Process. 23, 370 (2008).

    Article  Google Scholar 

  10. T. Agag, T. Koga, and T. Takeichi, Polymer 42, 3399 (2001).

    Article  CAS  Google Scholar 

  11. Y. H. Lee, C. B. Park, M. Sain, et al., J. Appl. Polym. Sci. 105, 1993 (2007).

    Article  CAS  Google Scholar 

  12. S. S. Ray, K. Okamoto, and M. Okamoto, J. Appl. Polym. Sci. 102, 777 (2006).

    Article  CAS  Google Scholar 

  13. R. Krishnamoorti and E. P. Giannelis, Macromolecules 30, 4097 (1997).

    Article  CAS  Google Scholar 

  14. V. G. Kulichikhin, L. A. Tsamalashvili, E. P. Plotnikova, et al., Polymer Science, Ser. A 45, 564 (2003) [Vysokomol. Soedin., Ser. A 45, 944 (2003)].

    Google Scholar 

  15. Y. Yoo and D. R. Paul, Polymer 49, 3795 (2008).

    Article  CAS  Google Scholar 

  16. S. Tanoue, L. A. Utracki, A. Garcia-Rejon, et al., Polym. Eng. Sci. 44, 1061 (2004).

    Article  CAS  Google Scholar 

  17. R. Kotsilkova, Mech. Time-Dependent Mater. 6, 283 (2002).

    Article  CAS  Google Scholar 

  18. N. Katsikis, T. Königer, and H. Münstedt, Appl. Rheol. 17, 52751 (2007).

    Google Scholar 

  19. V. V. Makarova, V. K. Gerasimov, A. K. Tereshin, et al., Polymer Science, Ser. A 49, 433 (2007) [Vysokomol. Soedin., Ser. A 49, 663 (2007)].

    Article  Google Scholar 

  20. V. E. Dreval’, F. N. Khairetdinov, I. A. Litvinov, et al., Polymer Science, Ser. A 37, 67 (1995) [Vysokomol. Soedin., Ser. A 37, 79 (1995)].

    Google Scholar 

  21. A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers. Methods of Measurement (Khimiya, Moscow, 1979) [in Russian].

    Google Scholar 

  22. G. V. Vinogradov, A. Ya. Malkin, V. V. Volosevitch, et al., J. Polym. Sci., Part B: Polym. Phys. 13, 1721 (1975).

    CAS  Google Scholar 

  23. R. A. Vaia, B. B. Sauer, O. K. Tse, and E. P. Giannelis, J. Polym. Sci., Part B: Polym. Phys. 35, 59 (1997).

    Article  CAS  Google Scholar 

  24. A. Ya. Malkin, Adv. Polym. Sci. 96, 69 (1990).

    CAS  Google Scholar 

  25. V. G. Kulichikhin, E. B. Kostikova, and M. A. Ginzberg, Khim. Volokna, No. 4, 27 (1971).

  26. V. G. Kulichikhin, A. Ya. Malkin, and S. P. Papkov, Vysokomol. Soedin., Ser. A 26, 451 (1984).

    CAS  Google Scholar 

  27. H. A. Barnes, Appl. Rheol. 17, 43111 (2007).

    Google Scholar 

  28. A. Ya. Malkin and A. I. Isaev, Rheology. Concepts, Methods, Applications (Professiya, St. Petersburg, 2007) [in Russian].

    Google Scholar 

  29. L. A. Utracki and J. Lyngaae-Jorgensen, Rheol. Acta 41, 394 (2002).

    Article  CAS  Google Scholar 

  30. G. V. Vinogradov, A. Ya. Malkin, E. P. Plotnikova, et al., Int. J. Polym. Mater. 2, 1 (1972).

    Article  Google Scholar 

  31. K. M. Lee and C. D. Han, Macromolecules 36, 8796 (2003).

    Article  CAS  Google Scholar 

  32. E. K. Borisenkova, G. B. Vasil’ev, V. G. Kulichikhin, et al., Polymer Science, Ser. A 40, 1112 (1998) [Vysokomol. Soedin., Ser. A 40, 1823 (1998)].

    Google Scholar 

  33. V. V. Makarova, Candidate’s Dissertation in Chemistry (Moscow, 2007).

  34. G. B. Vasilyev, V. V. Makarova, S. J. Picken, et al., Polym. Eng. Sci. (in press).

  35. A. Ya. Malkin and C. J. S. Petri, J. Rheol. (N. Y.) 41, 1 (1997).

    CAS  Google Scholar 

  36. T. S. Wilson and D. G. Baird, J. Non-Newtonian Fluid Mech. 44, 85 (1992).

    Article  CAS  Google Scholar 

  37. A. D. Gotsis and M. A. Odriozola, J. Rheol. (N. Y.) 44, 1205 (2000).

    CAS  Google Scholar 

  38. W. A. Kernick III and N. J. Wagner, Macromolecules 32, 1159 (1999).

    Article  CAS  Google Scholar 

  39. H. M. Laun and H. Münstedt, Rheol. Acta 15, 517 (1976).

    Article  CAS  Google Scholar 

  40. S. Kurzbeck, F. Oster, H. Münstedt, et al., J. Rheol. (N. Y.) 43, 359 (1999).

    CAS  Google Scholar 

  41. V. E. Dreval’ and E. K. Borisenkova, Rheol. Acta 32, 337 (1993).

    Article  Google Scholar 

  42. V. Pasanovic-Zujo, R. K. Gupta, and S. N. Bhattacharya, Rheol. Acta 43, 99 (2004).

    Article  CAS  Google Scholar 

  43. M. Stadlbauer, H. Janeschitz-Kriegl, G. Eder, and E. Ratajski, J. Rheol. (N. Y.) 48, 631 (2004).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. B. Vasilyev.

Additional information

Original Russian Text © G.B. Vasilyev, V.V. Makarova, A.V. Rebrov, A.Ya. Malkin, V.G. Kulichikhin, 2010, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2010, Vol. 52, No. 1, pp. 53–66.

This work was supported by the Russian Foundation for Basic Research and the Netherlands Organisation for Scientific Research (project no. 06-03-89403) and by the Russian Science Support Foundation.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasilyev, G.B., Makarova, V.V., Rebrov, A.V. et al. Rheology of liquid-crystalline solutions of hydroxylpropyl cellulose filled with layered silicate particles. Polym. Sci. Ser. A 52, 60–71 (2010). https://doi.org/10.1134/S0965545X10010098

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10010098

Keywords

Navigation