Skip to main content
Log in

Mechanisms of anelastic deformation in solid polymers: Solidlike and liquidlike processes

  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Several aspects of anelastic deformation of glassy polymers that cannot be explained in terms of existing theories are considered. Resemblance in the stress-strain response for solids of various natures and structures, including semicrystalline and glassy polymers, organic and inorganic solids, and low-molecular-mass and high-molecular-mass compounds, is analyzed. It was pointed out that the phenomena of the yield peak, strain softening, strain concentration (localization) in narrow shear bands, and transient effects are characteristic of the plastic deformation of any solid. The same is true for differences in the kinetics and mechanism of deformation at low (T def < 0.7T g) and high deformation temperatures (T def > 0.7T g). The mechanism of plastic deformation is discussed in detail for glassy polymers; at microscopic and nanoscale levels, plastic deformation proceeds via two stages: initial nucleation of small-scale shear transformations and their further coalescence. This coalescence leads to the advance of the shear front in the sample and to the nucleation and displacement of classical shear bands. The heat of plastic deformation is released out at the coalescence of shear transformations. It was assumed that shear transformations are responsible for the development and evolution of the yield peak in glassy polymers, strain softening, and other phenomena. The proposed mechanism of deformation in glasses fully agrees with the results of thermodynamic measurements and other experimental data reported in the literature. Computer simulation makes it possible to visualize the scenario of nucleation and evolution of shear transformations at the atomic level.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. F. Chen and D. J. Han, Plasticity for Structural Engineers (Springer, Berlin, 1988).

    Book  Google Scholar 

  2. H. E. H. Meijer and L. E. Govaert, Prog. Polym. Sci. 30, 915 (2005).

    Article  CAS  Google Scholar 

  3. E. F. Oleinik, S. N. Rudnev, and O. B. Salamatina, Polymer Science, Ser. A 49, 1302 (2007) [Vysokomol. Soedin., Ser. A 49, 2107 (2007)].

    Article  Google Scholar 

  4. A. S. Krausz and H. Eyring, Deformation Kinetics (Wiley, New York, 1985), Chap. 2.

    Google Scholar 

  5. E. Oleinik, High Performance Polymers, Ed. by E. Baer and S. Moet (Hanser, Munich, 1990), p. 60.

  6. E. F. Oleinik, S. N. Rudnev, O. B. Salamatina, et al., e-Polym., No. 029 (2006).

  7. E. F. Oleinik, O. B. Salamatina, S. N. Rudnev, and S. V. Shenogin, Polymer Science, Ser. A 35, 1532 (1993) [Vysokomol. Soedin., Ser. A 35, 1819 (1993)].

    Google Scholar 

  8. M. Utz, A. S. Atallah, P. Robyr, et al., Macromolecules 32, 6191 (1999).

    Article  CAS  Google Scholar 

  9. F. M. Copaldi and M. C. Boyce, Phys. Rev. Lett. 89, 17-5505-1 (2002).

    Google Scholar 

  10. F. M. Copaldi, M. C. Boyce, and G. C. Rutledge, Polymer 45, 1391 (2004).

    Article  Google Scholar 

  11. S. S. Sheiko, I. S. Vainillovithch, and S. N. Magonov, Polym. Bull. (Berlin) 25, 499 (1991).

    Article  CAS  Google Scholar 

  12. M. L. Bernshtein and V. A. Zaimovskii, Mechanical Properties of Metals (Metallurgiya, Moscow, 1979) [in Russian].

    Google Scholar 

  13. A. Galeski, Prog. Polym. Sci. 28, 1643 (2003).

    Article  CAS  Google Scholar 

  14. E. F. Oleinik, Polymer Science, Ser. C 45, 17 (2003) [Vysokomol. Soedin., Ser. C 45, 2137 (2003)].

    Google Scholar 

  15. L. Lin and A. S. Argon, J. Mater. Sci. 29, 294 (1994).

    Article  CAS  Google Scholar 

  16. T. Kazmierczak, A. Galeski, and A. S. Argon, Polymer 46, 8926 (2005).

    Article  CAS  Google Scholar 

  17. D. M. Parks and S. Ahzi, J. Mech. Phys. Solids 38, 533 (1990).

    Article  Google Scholar 

  18. J. Perez, Physics and Mechanics of Amorphous Polymers (A. A. Balkema, Rotterdam, 1998).

    Google Scholar 

  19. B. Escaig, Polym. Eng. Sci. 24, 737 (1984).

    Article  CAS  Google Scholar 

  20. J. J. Gilman, in Dislocation Dynamics, Ed. by A. R. Rosenfeld, G. T. Hahn, A. L. Bement, Jr., and R. I. Jaffe (McGraw-Hill, New York, 1968), p. 3.

  21. J. M. Li, in Metallic Glasses, Ed. by J. J. Gilman and H. J. Limi (American Society for Metals, Ohio, 1978; Metallurgiya, Moscow, 1984), Chap. 9.

  22. F. A. McClintok and A. S. Argon, Mechanical Behavior of Materials (Addison-Wesley, Reading, 1966; Mir, Moscow, 1970).

    Google Scholar 

  23. M. B. Bever, D. L. Holt, and A. L. Titchener, Prog. Mater. Sci. 17, 5 (1973).

    Article  Google Scholar 

  24. S. S. Sheiko, Candidate’s Dissertation in Mathematics and Physics (Moscow, 1990).

    Google Scholar 

  25. S. S. Sheiko, O. B. Salamatina, S. N. Rudnev, and E. F. Oleinik, Vysokomol. Soedin., Ser. A 32, 1844 (1990).

    CAS  Google Scholar 

  26. Y. Nanzai, Polym. Eng. Sci. 30, 96 (1990).

    Article  CAS  Google Scholar 

  27. M. C. Boyce and R. N. Haward, in The Physics of Glassy Polymers, Ed. by R. N. Haward and R. J. Young (Chapman and Hall, London, 1997), Chap. 5, p. 213.

  28. J. C. M. Li, in Plastic Deformation of Amorphous and Semi-Crystalline Materials, Ed. by B. Escaig and C. G’Sell (Les Editeurs de Physique, Les Ulis, 1982), p. 112.

  29. A. S. Argon, in Encyclopedia of Material Science and Technology, Ed. by R. W. Cahn, P. Hansen, and E. J. Kramer (VCH, Weinheim, 1993), Vol. 6, p. 461.

    CAS  Google Scholar 

  30. A. S. Argon and H. Y. Kuo, Mater. Sci. Eng. 39, 101 (1979).

    Article  Google Scholar 

  31. A. S. Argon and L. T. Shi, Philos. Mag. A 46, 275 (1982).

    Article  CAS  Google Scholar 

  32. L. Bragg and J. Nay, in The Feynman Lectures on Physics, Ed. by R. Feynman, R. Leighton, and M. Sands (Addison-Wesley, London, 1964; Mir, Moscow, 1966).

  33. M. I. Kotelyanskii, Candidate’s Dissertation in Mathematics and Physics (Moscow, 1993).

    Google Scholar 

  34. J. D. Cambell, R. H. Cooper, and T. J. Fischhof, in Dislocation Dynamics, Ed. by A. R. Rosenfeld, G. T. Hahn, A. L. Bement, Jr., and R. I. Jaffe (McGraw-Hill, New York, 1968), p. 723.

  35. E. F. Oleinik, S. V. Shenogin, T. V. Paramzina, et al., Polymer Science, Ser. A 40, 1187 (1998) [Vysokomol. Soedin., Ser. A 40, 1944 (1998)].

    Google Scholar 

  36. H. S. Chen, Appl. Phys. Lett. 29, 328 (1976).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward Tedorovich F. Oleinik.

Additional information

Original Russian Text © E.F. Oleinik, S.N. Rudnev, O.B. Salamatina, M.I. Kotelyanskii, 2008, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2008, Vol. 50, No. 5, pp. 773–788.

This work was supported by the Russian Foundation for Basic Research, project no. 05-03-32481, and Chemistry and Materials Science Division, Russian Academy of Sciences, Program of Fundamental Studies no. 3.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oleinik, E.T.F., Rudnev, S.N., Salamatina, O.B. et al. Mechanisms of anelastic deformation in solid polymers: Solidlike and liquidlike processes. Polym. Sci. Ser. A 50, 494–506 (2008). https://doi.org/10.1134/S0965545X08050039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X08050039

Keywords

Navigation