Skip to main content
Log in

Diesel Fraction Hydrotreating in the Presence of Nickel–Tungsten Sulfide Catalyst Particles In Situ Synthesized in Pores of Aromatic Polymers

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

A catalyst based on mixed nickel and tungsten sulfides has been synthesized by the decomposition of the thiosalt [N(n-Bu)4]2[Ni(WS4)2] in pores of a polymer matrix, namely, mesoporous aromatic framework PAF-FC-1. The catalyst has been tested in diesel oil fraction hydrotreating at a hydrogen pressure of 5 MPa and a temperature of 380°C. Reaction products have been analyzed by two-dimensional gas chromatography using a time-of-flight mass detector and a flame ionization detector. It has been shown that the use of the synthesized catalyst provides a decrease in the content of bi- and polycyclic hydrocarbons and a significant decrease in the sulfur compound concentration in oil fractions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. A. Stanislaus, A. Marafi, and M. S. Rana, Catal. Today 153, 1 (2010).

    Article  CAS  Google Scholar 

  2. R. Javadli and A. de Klerk, Appl. Petrochem. Res. 1, 3 (2012).

    Article  CAS  Google Scholar 

  3. J. Hein, O. Y. Gutierrez, S. Albersberger, et al., ChemCatChem 9, 629 (2017).

    Article  CAS  Google Scholar 

  4. P. Li, Y. Chen, C. Zhang, et al., Appl. Catal., A 533, 99 (2017).

  5. K. V. R. Chary, H. Ramakrishna, and G. M. Dhar, J. Mol. Catal. 68, L25 (1991).

    Article  CAS  Google Scholar 

  6. M. Zdražil, Catal. Today 86, 151 (2003).

    Article  Google Scholar 

  7. S. G. A. Ferraz, B. M. Santos, F. M. Z. Zotin, et al., Ind. Eng. Chem. Res. 54, 2646 (2015).

    Article  CAS  Google Scholar 

  8. G. Bellussi, G. Rispoli, A. Landoni, et al., J. Catal. 308, 189 (2013).

    Article  CAS  Google Scholar 

  9. Z. Deng, T. Wang, and Z. Wang, Chem. Eng. Sci. 65, 480 (2010).

    Article  CAS  Google Scholar 

  10. K. M. Kadiev, S. N. Khadzhiev, M. K. Kadieva, and E. S. Dogova, Pet. Chem. 57, 608 (2017).

    Article  CAS  Google Scholar 

  11. M. I. Knyazeva, D. I. Panyukova, and A. L. Maksimov, Pet. Chem. 59, 504 (2019).

    Article  CAS  Google Scholar 

  12. G. Alonso, V. Petranovskii, M. Del Valle, et al., Stud. Surf. Sci. Catal. 127, 351 (1999).

    Article  CAS  Google Scholar 

  13. I. A. Sizova, A. B. Kulikov, M. I. Onishchenko, et al., Pet. Chem. 56, 44 (2016).

    Article  CAS  Google Scholar 

  14. G. Alonso, V. Petranovskii, M. Del Valle, et al., Appl. Catal., A 197, 87 (2000).

  15. A. L. Maximov, I. A. Sizova, and S. N. Khadzhiev, Pure Appl. Chem. 89, 1145 (2017).

    Article  CAS  Google Scholar 

  16. M. P. Boronoev, M. A. Vinnikova, V. I. Ignat’eva, et al. Pet. Chem. 57, 855 (2017).

    Article  CAS  Google Scholar 

  17. S. M. A. M. Bouwens, R. Prins, V. H. J. de Beer, and D. C. Koningsberger, J. Phys. Chem. 94 (9), 3711 (1990).

    Article  CAS  Google Scholar 

  18. E. Karakhanov, Y. Kardasheva, L. Kulikov, et al., Catalysts 6, 122 (2016).

    Article  Google Scholar 

  19. E. Karakhanov, A. Maximov, Y. Kardasheva, et al., Catalysts 8, 397 (2018).

    Article  Google Scholar 

  20. R. A. Batryshin, D. A. Makeeva, L. A. Kulikov, et al. Pet. Chem. 59, 575 (2019).

    Article  CAS  Google Scholar 

  21. ASTM D2887-16: Standard Test Method for Boiling Range Distribution of Petroleum Fractions by Gas Chromatography (ASTM International, West Conshohocken, PA, 2016).

  22. M. K. Jennerwein, M. Eschner, T. Groger, et al., Energy Fuels 28, 5670 (2014).

    Article  CAS  Google Scholar 

  23. M. K. Jennerwein, A. C. Sutherland, M. Eschner, et al., Fuel 187, 16 (2017).

    Article  CAS  Google Scholar 

  24. M. Jennerwein, M. Eschner, T. Wilharm, et al., Fuel 235, 336 (2019).

    Article  CAS  Google Scholar 

  25. M. Kniazeva and A. Maximov, Catalysts 8, 644 (2018).

    Article  Google Scholar 

Download references

Funding

This work was supported by a grant from the Russian Science Foundation (project no. 15-19-00099-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kulikov.

Ethics declarations

A.L. Maksimov is the editor-in-chief of the Petroleum Chemistry journal. The other authors declare that there is no conflict of interest regarding the publication of this manuscript.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulikov, L.A., Maksimov, A.L. & Karakhanov, E.A. Diesel Fraction Hydrotreating in the Presence of Nickel–Tungsten Sulfide Catalyst Particles In Situ Synthesized in Pores of Aromatic Polymers. Pet. Chem. 59 (Suppl 1), S66–S71 (2019). https://doi.org/10.1134/S0965544119130103

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544119130103

Keywords:

Navigation