Skip to main content
Log in

Nanocellulose as a Component of Ultrafiltration Membranes

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Nanocellulose is a natural nanomaterial produced by the mechanical disintegration or acid hydrolysis of cellulose fibers. In recent years, nanocellulose has been extensively studied worldwide as a natural biodegradable modifier of synthetic polymer materials. The review describes the use of nanocellulose to improve the transport properties of ultrafiltration membranes used for the purification of aqueous media.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

Notes

  1. Equivalent terms are diffusion induced phase separation (DIPS) and wet phase inversion method.

  2. In fact, equivalent concepts—nanofibrillar cellulose and nanocrystalline cellulose—can be used. We use the terms specified in the text to preserve symmetry with the generally accepted English abbreviations: CNFs (cellulose nanofibrils) and CNCs (cellulose nanocrystals).

  3. Lignin is a hydrophobic network polymer, which is a matrix material of cell walls of plants. Hemicellulose (polyose) is a flexible branched polymer, which is a connector or “glue” between lignin and cellulose [39].

REFERENCES

  1. L. J. Zeman and A. L. Zydney, Microfiltration and Ultrafiltration: Principles and Applications, (Marcel Dekker, New York, 1996).

    Google Scholar 

  2. M. Cheryan, Ultrafiltration and Microfiltration Handbook (CRC, Boca Raton, 1998).

    Book  Google Scholar 

  3. A. A. Panteleev, B. E. Ryabchikov, O. V. Khoruzhii, et al., Membrane Separation Technologies in Industrial Water Treatment (DeLi Plyus, Moscow, 2012) [in Russian].

    Google Scholar 

  4. R. Mahendran, R. Malaisamy, and D. R. Mohan, Polym. Adv. Technol. 15, 149 (2004).

    Article  CAS  Google Scholar 

  5. H.-J. Li, Y.-M. Cao, J.-J. Qin, et al., J. Membr. Sci. 279, 328 (2006).

    Article  CAS  Google Scholar 

  6. H. Ma, C. Burger, B. S. Hsiao, and B. Chu, J. Mater. Chem. 21, 7501 (2011).

    Google Scholar 

  7. B. Ma, A. Qin, X. Li, and X. C. He, Ind. Eng. Chem. Res. 52, 9417 (2013).

    Article  CAS  Google Scholar 

  8. S. Livazovic, Z. Li, A. Behzad, et al., J. Membr. Sci. 490, 282 (2015).

    Article  CAS  Google Scholar 

  9. V. K. Thakur and S. I. Voicu, Carbohydrate Polym. 146, 148 (2016).

    Article  CAS  Google Scholar 

  10. X.-L. Li, L.-P. Zhu, B.-K. Zhu, and Y.-Y. Xu, Sep. Purif. Technol. 83, 66 (2011).

    Article  CAS  Google Scholar 

  11. T. S. Anokhina, A. A. Yushkin, I. S. Makarov, et al., Pet. Chem. 56, 1097 (2016).

    Article  CAS  Google Scholar 

  12. T. S. Anokhina, T. S. Pleshivtseva, V. Ya. Ignatenko, et al., Pet. Chem. 57, 477 (2017).

    Article  CAS  Google Scholar 

  13. F. M. Sukma and P. Z. Culfaz-Emecen, J. Membr. Sci. 545, 329 (2018).

    Article  CAS  Google Scholar 

  14. J. Mansouri, S. Harrisson, and V. Chen, J. Mater. Chem. 20, 4567 (2010).

    Article  CAS  Google Scholar 

  15. V. Kochkodan, D. J. Johnson, and N. Hilal, Adv. Colloid Interface Sci. 206, 116 (2014).

    Article  CAS  PubMed  Google Scholar 

  16. S. Kheirieh, M. Asghari, and M. Afsari, Rev. Chem. Eng. (2017). doi org/ doi 10.1515/revce-2017-0011

  17. C. Dizman, M. A. Tasdelen, and Y. Yagci, Polym. Int. 62, 991 (2013).

    CAS  Google Scholar 

  18. K. J. Kim, A. G. Fane, and C. J. D. Fell, Desalination 70, 229 (1988).

    Article  CAS  Google Scholar 

  19. M. Nyström, J. Membr. Sci. 44, 183 (1989).

    Article  Google Scholar 

  20. A. V. R. Reddy, D. J. Mohan, A. Bhattacharya, et al., J. Membr. Sci. 214, 211 (2003).

    Article  CAS  Google Scholar 

  21. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci. 309, 209 (2008).

    Article  CAS  Google Scholar 

  22. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci. 315, 36 (2008).

    Article  CAS  Google Scholar 

  23. R. Lakra, R. Saranya, Y. L. Thuyavan, et al., Sep. Purif. Technol. 118, 853 (2013).

    Article  CAS  Google Scholar 

  24. R. Kumar, A. M. Isloor, A. F. Ismail, and T. Matsuura, J. Membr. Sci. 440, 140 (2013).

    Article  CAS  Google Scholar 

  25. A. Pagidi, R. Saranya, G. Arthanareeswaran, et al., Desalination 344, 280 (2014).

    Article  CAS  Google Scholar 

  26. M. Z. Yunos, Z. Harun, H. Basri, and A. F. Ismail, Desalination 333, 36 (2014).

    Article  CAS  Google Scholar 

  27. E. Eren, A. Sarihan, B. Eren, et al., J. Membr. Sci. 475, 1 (2015).

    Article  CAS  Google Scholar 

  28. N. Sharma and M. K. Purkait, J. Membr. Sci. 522, 202 (2017).

    Article  CAS  Google Scholar 

  29. Y. Yang, H. Zhang, P. Wang, et al., J. Membr. Sci. 288, 231 (2007).

    Article  CAS  Google Scholar 

  30. S. Zhao, Z. Wang, X. Wei, et al., J. Membr. Sci. 385/386, 251 (2011).

    Article  CAS  Google Scholar 

  31. J. Yin, G. Zhu, and B. Deng, J. Membr. Sci. 437, 237 (2013).

    Article  CAS  Google Scholar 

  32. L. F. Hancock, S. M. Fagan, and M. S. Ziolo, Biomaterials 21, 725 (2000).

    Article  CAS  PubMed  Google Scholar 

  33. Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev. 110, 3479 (2010).

    Article  CAS  PubMed  Google Scholar 

  34. R. J. Moon, A. Martini, J. Nairn, et al., Chem. Soc. Rev. 40, 3941 (2011).

    Article  CAS  PubMed  Google Scholar 

  35. A. Dufresne, Nanocellulose: From Nature to High Performance Tailored Materials (Walter de Gruyter, Berlin, 2012).

    Book  Google Scholar 

  36. Handbook of Nanocellulose and Cellulose Nanocomposites, Ed. by H. Kargarzadeh, I. Ahmad, S. Thomas, and A. Dufresne (Wiley–VCH, Weinheim, 2017).

    Google Scholar 

  37. N. Saban and M. Jawaid, Celluluse-Reinforced Composites: Production, Properties and Applications, Ed. by M. Jawaid, S. Boufi, and A. Khalil H.P.S. (Elsevier, Amsterdam, 2017), p. 89.

  38. M. Minelli, M. G. Baschetti, F. Doghieri, et al., J. Membr. Sci. 358, 67 (2010).

    Article  CAS  Google Scholar 

  39. T. Wüstenberg, Cellulose and Cellulose Derivatives in the Food Industry (Wiley–VCH, Weinheim, 2015).

    Google Scholar 

  40. P. Willberg-Keyriläinen, J. Vartiainen, J. Pelto, and J. Ropponen, Carbohydrate Polym. 170, 160 (2017).

    Article  CAS  Google Scholar 

  41. H. Zhang, J. Liu, M. Guan, Z. Shang, Yi. Sun, Z. Lu, H. Li, X. An, H. Liu, ACS Sustainable Chem. Eng. 6, 4838 (2018).

  42. L. Ansaloni, J. Salas-Gay, S. Ligi, and M. G. Baschetti, J. Membr. Sci. 522, 216 (2017).

    Article  CAS  Google Scholar 

  43. D. Venturi, D. Grupkovic, L. Sisti, and M. G. Bas-chetti, J. Membr. Sci. 548, 263 (2018).

    Article  CAS  Google Scholar 

  44. A. W. Carpenter, C.-F. de Lannoy, and M. R. Wiesner, Environ. Sci. Technol. 49, 5277 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Y. Ying, W. Ying, Q. Li, et al., Appl. Mater. Today 7, 144 (2017).

    Article  Google Scholar 

  46. M. Sadrzadeh and S. Bhattacharjee, J. Membr. Sci. 441, 31 (2013).

    Article  CAS  Google Scholar 

  47. A. V. Bildyukevich, T. V. Plisko, A. S. Liubimova, et al., J. Membr. Sci. 524, 537 (2017).

    Article  CAS  Google Scholar 

  48. X. Qiu, H. Yu, M. Karunakaran, et al., ACS Nano 7, 768 (2013).

    Article  CAS  PubMed  Google Scholar 

  49. X. Ma, Y. Su, Q. Sun, et al., J. Membr. Sci. 292, 116 (2007).

    Article  CAS  Google Scholar 

  50. Y. Chen, M. Wei, and Y. Wang, J. Membr. Sci. 505, 53 (2016).

    Article  CAS  Google Scholar 

  51. Y. Chen, M. Wei, and Y. Wang, J. Membr. Sci. 525, 342 (2017).

    Article  CAS  Google Scholar 

  52. M. I. Voronova, T. N. Lebedeva, O. V. Surov, and A. G. Zakharov, Khim. Rast. Syr’ya 2, 49 (2013).

    Google Scholar 

  53. S. I. Kuzina, I. A. Shilova, V. F. Ivanov, et al., High Energy Chem. 47, 194 (2013).

    Article  CAS  Google Scholar 

  54. L. N. Gerke, Nats. Assots. Uchenykh 3, 39 (2015).

    Google Scholar 

  55. Yi. Wang, X. Wei, Li Jihua Li, F. Wang, Q. Wang, J. Chen, L. Lingxue Kong L., Fibers and Polymers, 16, 572 (2015).

  56. P. Phanthong, S. Karnjanakom, P. Reubroycharoen, X. Hao, A. Abudula, G. Guan, Cellulose 24, 2083 (2017).

  57. P. Daraei, N. Ghaemi, H. S. Ghari, and M. Norouzi, Cellulose 23, 2025 (2016).

    Article  CAS  Google Scholar 

  58. Q. G. Zhang, C. Deng, F. Soyekwo, et al., Adv. Funct. Mater. 26, 792 (2016).

    Article  CAS  Google Scholar 

  59. S. Noorani, J. Simonsen, and S. Atre, Cellulose 14, 577 (2007).

    Article  CAS  Google Scholar 

  60. P. Daraei, N. Ghaemi, and H. S. Ghari, Cellulose 24, 915 (2017).

    Article  CAS  Google Scholar 

  61. B. S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal, Desalination 326, 77 (2013).

    Article  CAS  Google Scholar 

  62. P. Qu, H. Tang, Y. Gao, et al., Bioresources 5, 2323 (2010).

    CAS  Google Scholar 

  63. H. Bai, X. Wang, Y. Zhou, and L. Zhang, Prog. Nat. Sci.: Mater. Int. 22, 250 (2012).

    Article  Google Scholar 

  64. H. Bai, Y. Zhou, and L. Zhang, Adv. Polym. Technol. 34, 21471 (2015).

    Article  CAS  Google Scholar 

  65. H. Bai, X. Wang, H. Sun, and L. Zhang, Desalin. Water Treat. 53, 2882 (2015).

    Article  CAS  Google Scholar 

  66. S. Li, Y. Gao, H. Bai, et al., Bioresources 6, 1670 (2011).

    CAS  Google Scholar 

  67. Z. Ding, L. Zhong, X. Wang, and L. Zhang, High Perform. Polym. 28, 1192 (2016).

    Article  CAS  Google Scholar 

  68. Z. Ding, X. Liu, Y. Liu, and L. Zhang, Polymers 8, 349 (2016).

    Article  CAS  Google Scholar 

  69. D. Zhang, A. Karkooti, L. Liu, et al., J. Membr. Sci. 549, 350 (2018).

    Article  CAS  Google Scholar 

  70. S. Al Aani, C. J. Wright, M. A. Atieh, and N. Hilal, Desalination 401, 1 (2017).

    Article  CAS  Google Scholar 

  71. L. Zhong, Z. Ding, B. Li, and L. Zhang, Bioresources 10, 2936 (2015).

    CAS  Google Scholar 

  72. L. Kong, D. M. Zhang, Z. Shao, et al., Desalination 332, 117 (2014).

    Article  CAS  Google Scholar 

  73. J. Lv, G. Zhang, H. Zhang, and F. Yang, Carbohydrate Polym. 174, 190 (2017).

    Article  CAS  Google Scholar 

  74. L. Bai, N. Bossa, F. Qu, et al., Environ. Sci. Technol. 51, 253 (2017).

    Article  CAS  PubMed  Google Scholar 

  75. A. Mautner, K.-Y. Lee, T. Tammelin, et al., React. Funct. Polym. 86, 209 (2015).

    Article  CAS  Google Scholar 

  76. Z. Karim, S. Claudpierre, M. Grahn, et al., J. Membr. Sci. 514, 418 (2016).

    Article  CAS  Google Scholar 

  77. N. Peng, N. Widjojo, P. Sukitpaneenit, et al., Prog. Polym. Sci. 37, 1401 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation, project 14.577.21.0265 (unique project identifier RFMEFI57717X0265).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Anokhina.

Additional information

Translated by M. Timoshinina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Malakhov, A.O., Anokhina, T.S., Petrova, D.A. et al. Nanocellulose as a Component of Ultrafiltration Membranes. Pet. Chem. 58, 923–933 (2018). https://doi.org/10.1134/S0965544118110051

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544118110051

Keywords:

Navigation