Skip to main content
Log in

The regional cerebral blood flow pattern of the normal human brain and its factor structure

  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The regional cerebral blood flow (rCBF) pattern of the normal human brain was drawn, and its structure was studied. Relative rCBF estimates for 66 regions of interest (cerebral anatomical-functional areas) were obtained using positron emission tomography in 158 healthy subjects aged 18–49 years. The rCBF rate variation range was 89–121% of the rCBF rate averaged over all regions of interest, taken as 100%. The rCBF rates were the highest (>115%) in the paracentral lobule, precuneus, insular cortex, primary visual cortex, and Broca’s area and the lowest (<95%) in the mediobasal regions of the temporal gyri and caudate nuclei. Analysis of the factor structure of the resultant pattern made it possible to classify cerebral anatomical-functional areas according to a predominant effect of one of the following factors on the interdependence between rCBF rates: (1) cytoarchitectonic characteristics; (2) the functional state of the cortex during quiet wakefulness; or (3) the brain vascular region to which the area belongs. The obtained pattern should be taken into account in both mapping of the functions of a normal brain and clinical diagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Herscovitch, P., Raichle, M., Kilbourn, M.R., et al., Positron Emission Tomographic Measurement of Cerebral Blood Flow and Permeability-Surface Area Product of Water Using [15O]Water and [11C]butanol, J. Cerebr. Blood Flow Metab., 1987, vol. 7, p. 527.

    CAS  Google Scholar 

  2. Catafau, A.M., Lomeña, F.J., Pavia, J., et al., Regional cerebral Blood Flow Pattern in Normal Young and Aged Volunteers: A 99MTc-HMPAO SPET Study, Eur. J. Nucl. Med., 1996, vol. 23, p. 1329.

    Article  PubMed  CAS  Google Scholar 

  3. Moeller, J.R., Nakamura, T., Mentis, M.J., et al., Reproducibility of Regional Metabolic Covariance Patterns: Comparison of Four Populations, J. Nucl. Med., 1999, vol. 40, p. 1264.

    PubMed  CAS  Google Scholar 

  4. Evans, A., Thompson, C., Marrett, S., et al., Performance Evaluation of the PC-2048: A New 15-Slice Encoded-Crystal PET Scanner for Neurological Studies, IEEE Trans. Med. Imaging, 1991, vol. 10, no. 1, p. 90.

    Article  CAS  PubMed  Google Scholar 

  5. Korsakov, M.V., Krasikova, R.N., Kuznetsova, O.F., et al., Synthesis of Oxygen-15-Labeled Water, a Radiopharmaceutical Preparation for Determining the Cerebral Blood Flow Rate by Means of PET, Radiokhimiya, 1994, vol. 36, no. 1, p. 40.

    CAS  Google Scholar 

  6. Kanno, I., Iida, H., Miura, S., et al., Optimal Scan Time of Oxygen-15-Labeled Water Injection Method for Measurement of Cerebral Blood Flow, J. Nucl. Med., 1991, vol. 32, p. 1931.

    PubMed  CAS  Google Scholar 

  7. Arndt, S., Cizadlo, T., O’Leary, D., et al., Normalizing Counts and Cerebral Blood Flow Intensity in Functional Imaging Studies of the Human Brain, NeuroImage., 1996, vol. 3, p. 175.

    Article  PubMed  CAS  Google Scholar 

  8. Talairach, J. and Tournoux, P., Co-planar Stereotactic Atlas of the Human Brain: 3-Dimensional Proportional System: An Approach to Cerebral Imaging, New-York: Thieme, 1988.

    Google Scholar 

  9. Rokhlin, A.S., Kostenikov, N.A., Korotkov, A.D., et al., Linear Spatial Normalization of the Human Brain Using Scanditronix PC2048-15B, Hum. Brain Mapping, 1995. suppl. 1, p. 75.

  10. Harman, H.H., Modern Factor Analysis, Chicago: Univ. Chicago, 1967, 2nd edition.

    Google Scholar 

  11. Demonet, J.-F., Celsis, P., Agniel, A., et al., Activation of Regional Cerebral Blood Flow by a Memorization Task in Early Parkinson’s Disease Patients and Normal Subjects, J. Cer. Blood Flow Metab., 1994, vol. 14, p. 431.

    CAS  Google Scholar 

  12. Wang, G.-J., Volkow, N.D., Wolf, A.P., et al., Intersubject Variability of Brain Glucose Metabolic Measurement in Young Normal Males, J. Nucl. Med., 1994, vol. 34, p. 1457.

    Google Scholar 

  13. Tyler, J.L, Strother, S.C., Zatorre, R.J., et al., Stability of Regional Cerebral Glucose Metabolism in the Normal Brain Measured by Positron Emission Tomography, J. Nucl. Med., 1988, vol. 29, p. 631.

    PubMed  CAS  Google Scholar 

  14. Martin, A.J., Friston, K.J., Colebatch, J.G., et al., Decreases in Regional Cerebral Blood Flow with Normal Aging, J. Cer. Blood Flow Metab., 1991, vol. 11, p. 684.

    CAS  Google Scholar 

  15. Lobaugh, N.J., Caldwell, C.B., Black, S.E., et al., Three Brain SPECT Region-of-Interest Templates in Elderly People: Normative Values, Hemispheric Asymmetries, and a Comparison of Single-and Multihead Cameras, J. Nucl. Med., 2000, vol. 41, p. 45.

    PubMed  CAS  Google Scholar 

  16. Drevets, W.C., Videen, T.O., Price, J.L., et al., A Functional Anatomical Study of Unipolar Depression, J. Neurosci., 1992, vol. 12, p. 3628.

    PubMed  CAS  Google Scholar 

  17. Holcomb, H.H., Cascella, N.G., Medoff, D.R., et al., PET-FDG Test-Retest Reliability during a Visual Discrimination Task in Schizophrenia, J. Comp. Assist. Tomogr., 1993, vol. 17, no. 5, p. 704.

    Article  CAS  Google Scholar 

  18. Gur, R.C., Gur, R.E., Obrist, W.D., et al., Sex and Handedness Differences in Cerebral Blood Flow during Rest and Cognitive Activity, Science, 1982, vol. 217, p. 659.

    Article  PubMed  CAS  Google Scholar 

  19. Rodrigez, G., Warkentin, S., Risberg, J., et al., Sex Differences in Regional Cerebral Blood Flow, J. Cer. Blood Flow Metab., 1988, vol. 9, p. 783.

    Google Scholar 

  20. Risberg, J., Hagstadius, S., Johanson, A., et al., Regional Cerebral Blood Flow Correlates of Anxiety and Personality Traits, in Brain work and mental activity (Alfred Benzon Symposium 31), Lassen, N.A., Ingvar, D.H., Raichle, M.E., and Friberg, L., Eds., Copenhagen: Munksgaard, 1991, p. 392.

    Google Scholar 

  21. George, M.S., Ketter, T.A., Parekh, P.I., et al., Brain Activity during Transient Sadness and Happiness in Healthy Women, Am. J. Psychiatry, 1995, vol. 152, p. 341.

    PubMed  CAS  Google Scholar 

  22. Esposito, G., Van Horn, J.D., Weinberger, D.R., et al., Gender Differences in Cerebral Blood Flow as a Function of Cognitive State with PET, J. Nucl. Med., 1996, vol. 37, p. 559.

    PubMed  CAS  Google Scholar 

  23. Kataeva, G.V., Korotkov, A.D., Pakhomov, S.V., et al., Functional States of Human Brain Anatomical Structures at Various Levels of Reactive Anxiety. A PET-Study in Healthy Volunteers, Fiziol. Chel., 1999, vol. 25, no. 3, p. 8 [Hum. Physiol. (Engl. Transl.), 1999, vol. 25, no. 3, p. 252].

    CAS  Google Scholar 

  24. Frackowiak, R., Friston, K., Frith, C., et al., Human Brain Function, Frackowiak, R.S., Ed., Toronto: Academic, Harcourt Brace and Company, 1997.

    Google Scholar 

  25. Duus, P., Topical Diagnosis in Neurology, Stuttgart: Thieme, 1989.

    Google Scholar 

  26. Luria, A.R., Vysshie korkovye funktsii cheloveka i ikh narusheniya pri lokal’nykh porazheniyakh mozga (Human Higher Cortical Functions and Their Impairments Caused by Local Brain Damage), Moscow, 2000, 3rd edition.

  27. Bechtereva, N.P., Abdullaev, Y.G., and Medvedev, S.V., Neuronal Activity in Frontal Speech Area 44 of the Human Cerebral Cortex during Word Recognition, Neurosci. Lett., 1991, vol. 124, p. 61.

    Article  PubMed  CAS  Google Scholar 

  28. Paulesu, E., Frith, C.D., and Frackowiak, R.S., The Neural Correlates of the Verbal Component of Working Memory, Nature, 1993, vol. 362, p. 342.

    Article  PubMed  CAS  Google Scholar 

  29. Caplan, D., Alpert, N., and Waters, G., Effects of Syntactic Structure and Propositional Number on Patterns of Regional Cerebral Blood Flow, J. Cogn. Neurosci., 1998, vol. 10, p. 541.

    Article  PubMed  CAS  Google Scholar 

  30. Andreasen, N.C., O’Leary, D.S., Cizadlo, T., et al., Remembering the Past: Two Facets of Episodic Memory Explored with Positron Emission Tomography, Am. J. Psychiatry, 1995, vol. 152, p. 1576.

    PubMed  CAS  Google Scholar 

  31. Medvedev, S.V., Pakhomov, S.V., Rudas, M.S., et al., Choosing Quiet Wakefulness as a Reference State for Psychological Tests, Fiziol. Chel., 1996, vol. 22, no. 1, p. 5 [Hum. Physiol. (Engl. Transl.), 1996, vol. 22, no. 1, p. 1].

    Google Scholar 

  32. Horwitz, B., Duara, R., and Rapoport, S.I., Intercorrelations of Glucose Metabolic Rates between Brain Regions: Application to Healthy Males in a State of Reduced Sensory Input, J. Cer. Blood Flow Metab., 1984, vol. 4, p. 484.

    CAS  Google Scholar 

  33. Szabo, Z., Camargo, E.E., Sostre, S., et al., Factor Analysis of Regional Cerebral Glucose Metabolic Rates in Healthy Men, Eur. J. Nucl. Med., 1992, vol. 19, p. 469.

    Article  PubMed  CAS  Google Scholar 

  34. Galaburda, A.M., Sanides, F., and Geschwind, N., Human Brain: Cytoarchitectonic Left-Right Asymmetries in the Temporal Speech Region, Arch. Neurol., 1978, vol. 35, no. 12, p. 812.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © G.V. Kataeva, A.D. Korotkov, 2007, published in Fiziologiya Cheloveka, 2007, Vol. 33, No. 4, pp. 5–10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kataeva, G.V., Korotkov, A.D. The regional cerebral blood flow pattern of the normal human brain and its factor structure. Hum Physiol 33, 383–387 (2007). https://doi.org/10.1134/S0362119707040019

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119707040019

Keywords

Navigation