Skip to main content
Log in

Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The analysis of the internal structure of the ice satellites of the Solar System’s giant planets, Jupiter and Saturn, and the estimation of the composition of other water-containing cosmic bodies require thermodynamic information on the phase transformations in the water-ice system. This work presents experimental and theoretical data on the studies of the phase diagram of water (H2O) and the thermodynamic properties of water ices that were generalized, analyzed, and systematized. A brief description of the equations of state for different modifications of high-pressure ices that are most frequently used in thermodynamic calculations is presented. Based on the mathematical treatment of available experimental data for phase equilibria in the water-ice system, the boundaries of the phase transitions between crystal ices I, II, III, V, VI, VII, VIII, and X and liquid water are constructed; in addition, the thermal dependences of the thermodynamic functions (changes in enthalpy, entropy, and volume) of most water-ice phase transitions are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abascal, J.L.F., Sanz, E., García Fernández R., and Vega, C., A Potential Model for the Study of Ices and Amorphous Water: TIP4P/Ice, J. Chem. Phys., 2005, vol. 22, p. 234511.

    Article  ADS  Google Scholar 

  • Aoki, K., Yamawaki, H., Sakashita, M., and Fujihisa, H., Infrared Absorption Study of the Hydrogen-Bond Symmetrization in Ice to 110 GP, Phys. Rev. B., 1996, vol. 54, pp.15673–15677.

    Article  ADS  Google Scholar 

  • Baranyai, A., Bartók, A., and Chialvo, A.A., Computer Simulation of the 13 Crystalline Phases of Ice, J. Chem. Phys., 2005, vol. 123, p. 054502.

    Article  ADS  Google Scholar 

  • Benoit, M., Marx D., and Parrinello, M., Tunnelling and Zero-Point Motion in High-Pressure Ice, Nature, 1998, vol. 392, pp. 258–261.

    Article  ADS  Google Scholar 

  • Benoit, M., Romero, A.H, and Marx D., Reassigning Hydrogen-Bond Centering in Dense Ice, Phys. Rev. Lett., 2002, vol. 89, p. 145501.

    Article  ADS  Google Scholar 

  • Bernal, J.D. and Fowler, R.H., A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, J. Chem. Phys., 1933, vol. 1, no. 8, pp. 515–626.

    Article  ADS  Google Scholar 

  • Besson, J.M., Pruzan, Ph., Klotz, S., et al., Variation of Interatomic Distances in Ice VIII to 10 GPa, Phys. Rev. B., 1994, vol. 49, no. 18, pp. 12540–12551.

    Article  ADS  Google Scholar 

  • Bridgman, P.W., Water, in the Liquid and Five Solid Forms, under Pressure, Proc. Amer. Acad. Arts Sci., 1911, vol. 47, no.13, pp. 441–558.

    Google Scholar 

  • Bridgman, P.W., The Phase Diagram of Water to 45000 kg/cm3, J. Chem. Phys., 1937, vol. 5, pp. 964–966.

    Article  ADS  Google Scholar 

  • Brown, A.J. and Whalley, E., Preliminary Investigation of the Phase Boundaries between Ice VI and VII and Ice VI and VIII, J. Chem. Phys., 1966, vol. 45, pp. 4360–4361.

    Article  ADS  Google Scholar 

  • Cavazzoni, C., Chiarotti, G.L. Scandolo, S., et al., Superionic and Metallic States of Water and Ammonia at Giant Planet Conditions, Science, 1999, vol. 283, pp. 44–46.

    Article  ADS  Google Scholar 

  • Chizhov, V.E., On Thermodynamic Properties and Thermal Equations of State for Phases of High-Pressure Ices, Prikl. Mekh. Tekh. Fiz., 1993, vol. 2, pp. 113–123.

    Google Scholar 

  • Chou, I.-M. and Haselton, H.T., Visual Observations of Crystal Morphologies and Melting of Ice IV at Pressures up to 1 GPa, Rev. High Pressure Sci. Technol., 1998, vol. 7, p. 1132.

    Google Scholar 

  • Chou, I.-M., Blank, J.G., Goncharov, A.F., et al., In situ Observations of a High-Pressure Phase of H2O Ice, Science, 1998, vol. 281, pp. 809–811.

    Article  ADS  Google Scholar 

  • Choukroun, M. and Grasse, O., Thermodynamic Model for Water and High-Pressure Ices up to 2.2 GPa and down to the Metastable Domain, J. Chem. Phys., 2007, vol. 127, p. 124506.

    Article  ADS  Google Scholar 

  • Datchi, F., Loubeyre, P., and LeToullec, R., Extended and Accurate Determination of the Melting Curves of Argon, Helium, Ice, H2O, and Hydrogen H2, Phys. Rev. B., 2000, vol. 61, no. 10, pp. 6535–6546.

    Article  ADS  Google Scholar 

  • Debenedetti, P.G., Supercooled and Glassy Water, J. Phys.: Condens. Matter., 2003, vol. 15, R1669–R1726.

    Article  ADS  Google Scholar 

  • Dorsey, N.E., Properties of Ordinary Water-Substance, New York: Hafner Publishing Company, 1968.

    Google Scholar 

  • Dubrovinskaia, N., Dubrovinsky, L., Whole-Cell Heater for the Diamond Anvil Cell, Rev. of Sci. Instrum., 2003, vol. 74, no. 7, pp. 3433–3437

    Article  ADS  Google Scholar 

  • Durham, W.B., Heard, H.C., and Kirby, S.H., Experimental Deformation of Polycrystalline H2O Ice at High Pressure and Low Temperature: Preliminary Results, J. Geophys. Res., 1983, vol. 88, Supplement, B377–B392.

    Article  ADS  Google Scholar 

  • Eisenberg, D. and Kauzmann, W., The Structure and Properties of Water, London: Oxford Univ. Press, 1969.

    Google Scholar 

  • Engelhardt, H. and Whalley, E., Ice IV, J. Chem. Phys., 1972, vol. 56, pp. 2678–2684.

    Article  ADS  Google Scholar 

  • Engelhard, H. and Kamb, B., Structure of Ice IV, a Metastable High-Pressure Phase, J. Chem. Phys., 1981, vol. 75, p. 5887.

    Article  ADS  Google Scholar 

  • Fei, Y., Mao, H.-K., and Hemley, R.J., Thermal Expansivity, Bulk Modulus, and Melting Curve of H2O-Ice VII to 20 GPa, J. Chem. Phys., 1993, vol. 99, no. 7, pp. 5369–5373.

    Article  ADS  Google Scholar 

  • Feistel, R. and Wagner, W., A New Equation of State for H2O Ice Ih, J. Phys. Chem. Ref. Data, 2006, vol. 35, pp. 1021–1047.

    Article  ADS  Google Scholar 

  • Fortes, D., Wood, I.G., Brodholt, J.P., and Vocádlo, L., Ab Initio Simulation of the Ice II Structure, J. Chem. Phys, 2003, vol. 119, no. 8, pp. 4567–4572.

    Article  ADS  Google Scholar 

  • Frank, M.R., Fei, Y., and Jingzhu, H., Constraining the Equation of State of Fluid H2O to 80 GPa Using the Melting Curve, Bulk Modulus, and Thermal Expansivity of the Ice VII, Geochim. et Cosmochim. Acta, 2004, vol. 68, no. 13, pp. 2781–2790.

    Article  ADS  Google Scholar 

  • Fukazawa, H., Ikeda, S., and Mae, S., Incoherent Inelastic Neutron Scattering Measurements on Ice XI; the Proton-Ordered Phase of Ice Ih Doped with KOH, Chem. Phys. Lett., 1998, vol. 282, pp. 215–218.

    Article  ADS  Google Scholar 

  • Gagnon, R.E., Kiefte, H., and Clouter, M.J., Acoustic Velocities and Densities of Polycrystalline Ice Ih, II, III, V, and VI by Brillouin Spectroscopy, J. Chem. Phys., 1990, vol. 92, pp 1909–1914.

    Article  ADS  Google Scholar 

  • Giovambattista, N., Stanley, E.H., and Sciortino, F., Relation between the High Density Phase and the Very-High Density Phase of Amorphous Solid Water, Phys. Rev. Lett., 2005, vol. 94, p. 107803.

  • Goldman, N, Fried, L.E, Kuo, I.W, and Mundy, C.J., Bonding in the Supercritical Phase of Water, Phys. Rev. Lett., 2005, vol. 200594, pp. 217801–217804.

    Article  ADS  Google Scholar 

  • Goncharov, A.F., Struzhkin, V.V., Somayazulu, M.S., et al., Compression of Ice to 210 Gigapascals: Infrared Evidence for a Symmetric Hydrogen-Bonded Phase, Science, 1996, vol. 273, pp. 218–220.

    Article  ADS  Google Scholar 

  • Goncharov, A.F., Struzhkin, V.V., Mao, H.-K., Hemley, R.J., Raman Spectroscopy of Dense H2O and the Transition to Symmetric Hydrogen Bonds, Phys. Rev. Lett., 1999, vol. 83, no. 10, pp. 1998–2001.

    Article  ADS  Google Scholar 

  • Goncharov, A.F., Goldman, N., Fried, L.E., et al., Dynamic Ionization of Water under Extreme Conditions, Phys. Rev. Lett., 2005, vol. 94, pp. 125508–125511.

    Article  ADS  Google Scholar 

  • Goncharov, A.F. and Hemley, R.J, Probing Hydrogen-Rich Molecular Systems at High Pressures and Temperatures, Chem. Soc. Rev., 2006, vol. 35, pp. 899–907.

    Article  Google Scholar 

  • Grasset, O., Calibration of the R Ruby Fluorescence Lines in the Pressure Range [0–1 GPa] and the Temperature Range [250–300 K], High Pressure Research, 2001, vol. 21, pp. 139–157.

    Article  ADS  Google Scholar 

  • Grasset, O., Amiguet, E., and Choukroun, M., Pressure Measurements within Optical Cells Using Diamond Sensors: Accuracy of the Method below 1 GPa, High Pressure Research, 2005, vol. 25, no. 4, pp. 255–265.

    Article  Google Scholar 

  • Hemley, R.J., Jephcoat, A.P., Mao, H.K., et al., Static Compression of H2O-Ice to 128 GPa (1.28 Mbar), Nature, 1987, vol. 330, no. 6150, pp. 737–740.

    Article  ADS  Google Scholar 

  • Hobbs, P.V., Ice Physics, Oxford: Clarendon Press, 1974, p. 837.

    Google Scholar 

  • Holzapfel, W.B., On the Symmetry of the Hydrogen Bonds in Ice VII, J. Chem. Phys., 1972, vol. 56, pp 712–715.

    Article  ADS  Google Scholar 

  • Hussmann, H., Sotin, C., and Lunine, J.I., Interiors and Evolution of Icy Satellites, Treatise on Geophys., 2007, vol. 10, pp. 509–539

    Article  Google Scholar 

  • IAPWS. Revised release on the pressure along the melting and sublimation curves of ordinary water substance. 2008; http://www.iapws.org/relguide/meltsub.pdf

  • Johari, G.P., Lavergne, A., and Whalley, E., Dielectric Properties of Ice VII and VIII and the Phase Boundary between Ice VI and VII, J. Chem. Phys., 1974, vol. 61, no. 10, pp. 4292–4300.

    Article  ADS  Google Scholar 

  • Johari, G.P., Stability of Ice XII Relative to Ice V and Ice VI at High Pressures, J. Chem. Phys., 2003, vol. 118, no. 1, pp. 242–248.

    Article  ADS  Google Scholar 

  • Kamb, B., Crystallography of Ice, Physics and Chemistry of Ice, Whalley, E., Jones, S.J., and Gold, L.W., Eds., Ottawa: Royal Society of Canada, 1973, p. 28.

    Google Scholar 

  • Katoh, E., Yamawaki, H., Fujihisa, H., et al., Protonic Diffusion in High-Pressure Ice VII, Science, 2002, vol. 295, no. 5558, pp. 1264–1266.

    Article  ADS  Google Scholar 

  • Kawada, S., Dielectric Dispersion and Phase Transition of KOH Doped Ice, J. Phys. Soc. Japan, 1972, vol. 32, p. 1442.

    Article  ADS  Google Scholar 

  • Kell, G.S. and Whalley, E., Eqiulibrium Line between Ice I and III, J. Chem. Phys., 1968, vol. 48, no. 5, pp. 2359–2361.

    Article  ADS  Google Scholar 

  • Khabbard, U., Vnutrennee stroenie planet (Internal Structure of Planets), Moscow: Mir, 1987.

    Google Scholar 

  • Klotz, S., Besson, J. M., Hamel, G., et al., Metastable Ice VII at Low Temperature and Ambient Pressure, Nature (London), 1999, vol. 398, pp. 681–684.

    Article  ADS  Google Scholar 

  • Klotz, S., Hamel, G., Loveday, J.S., et al., Structure of High-Density Amorphous Ice under Pressure, Phys. Rev. Lett., 2002, vol. 89, p. 285502.

    Article  ADS  Google Scholar 

  • Knight, C. and Singer, S.J., A Re-Examination of the Ice III/IX Hydrogen Bond Ordering Phase Transition, J. Chem. Phys., 2006, vol. 125, p. 064506.

    Article  ADS  Google Scholar 

  • Koza, M.M., Schober, H., Hansen, T., et al., Ice XII in Its Second Regime of Metastability, Phys. Rev. Lett., 2000, vol. 84, pp. 4112–4115.

    Article  ADS  Google Scholar 

  • Kronrod, V.A. and Kuskov, O.L., Chemical Differentiation of Galilean Satellites of Yupiter: 1. The Structure of Water-Ice Shell of Kallisto, Geokhim., 2003, no. 9, pp. 968–983 [Geochem. Int. (Engl. Transl.), no. 9].

  • Kuhs, W.F., Bliss, D.V., and Finney, J.L., High-Resolution Neutron Powder Diffraction Study of ice Ic, J. Phys. Colloq. C1, 1987, vol. 48, pp. 631–636.

    Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Core Sizes and Internal Structure of the Earth’s and Jupiter’s Satellites, Icarus, 2001, vol. 151, pp. 204–227.

    Article  ADS  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Internal Structure of Europa and Callisto, Icarus, 2005, vol. 177, pp. 550–569.

    Article  ADS  Google Scholar 

  • Kuskov, O.L. and Kronrod, V.A., Models of Internal Structure of Kallisto, Astron. Vestn, 2005, vol. 39, no. 4, pp. 321–341 [Sol. Syst. Res. (Engl. Transl.), vol. 39].

    Google Scholar 

  • Kuskov, O.L., Dorofeeva, V.A., Kronrod, V.A., and Makalkin, A.B., Sistemy Yupitera i Saturna: Formirovanie, sostav i vnutrennee stroenie krupnykh sputnikov (Systems of Yupiter and Saturn: Formation, Composition, and Internal Structure of Big Satellites), Moscow: Izd. LKI, 2009.

    Google Scholar 

  • Leon, C.G., Romo, S.R., and Tchijov, V., Thermodynamics of High-Pressure Ice Polymorphs: Ice II, J. Phys. and Chem. of Solids, 2002, vol. 63, pp. 843–851.

    Article  ADS  Google Scholar 

  • Lin, J.F., Militzer, B., Struzhkin, V.V., et al., High Pressure-Temperature Raman Measurements of H2O Melting to 22 GPa and 900 K, J. Chem. Phys., 2004, vol. 121, no. 17, pp. 8423–8427.

    Article  ADS  Google Scholar 

  • Lin, J.F., Gregorayanz, E., Struzhkin, V.V., et al., Melting Behavior of H2O at High Pressures and Temperatures, Geophys. Res. Lett., 2005, vol. 32, L11306.

    Article  ADS  Google Scholar 

  • Line, C.M.B. and Withworth, R.W., A High Resolution Neutron Powder Diffraction Study of D2O Ice XI, J. Chem. Phys., 1996, vol. 104, pp. 10008–10013.

    Article  ADS  Google Scholar 

  • Lobban, C., Finney, J.L., and Kuhs, W.F., The Structure of a New Phase of Ice, Nature, 1998, vol. 391, pp. 268–270.

    Article  ADS  Google Scholar 

  • Lobban, C., Finney, J.L. and Kuhs, W.F., The Structure and Ordering of Ices III and V, J. Chem. Phys., 2000, vol. 112, pp. 7169–7180.

    Article  ADS  Google Scholar 

  • Lobban C., Finney J.L. and Kuhs W.F., The P-T Dependency of the Ice II Crystal Structure and the Effect of Helium Inclusion, J. Chem. Phys., 2002, vol. 117, pp. 3928–3934.

    Article  ADS  Google Scholar 

  • Loerting T., Salzman C., Kohl I., et al., A Second Distinct Structural “State” of High-Density Amorphous Ice at 77 K and 1 bar, Phys. Chem. Chem. Phys., 2001, vol. 3, pp. 5355–5357.

    Article  Google Scholar 

  • Loerting T., Kohl I., Salzmann C., et al., (Meta-) Stability Domain of Ice XII Revealed between 158–212 K and 0.7–1.5 GPa on Isobaric Heating of High-Density Amorphous Ice, J. Chem. Phys., 2002, vol. 116, pp. 3171–3174.

    Article  ADS  Google Scholar 

  • Londono J.D., Kuhs W.F., and Finney J.L., Neutron Diffraction Studies of Ices III and IX on Under-Pressure and Recovered Samples, J. Chem. Phys., 1993, vol. 98, pp. 4878–4888.

    Article  ADS  Google Scholar 

  • Loubeyre, P., LeToullec, R., Wolanin, E., et al., Modulated Phases and Proton Centering in Ice Observed by X-Ray Diffraction up to 170 GPa, Nature, 1999, vol. 397, pp. 503–506.

    Article  ADS  Google Scholar 

  • Lupo, M.J. and Lewis, J.S., Mass-Radius Relationships in Icy Satellites, Icarus, 1979, vol. 40, pp. 157–170.

    Article  ADS  Google Scholar 

  • Lyapin, A.G., Stal’gorova, O.V., Gromnitskaya, E.L., and Brazhkin, V.V., Crossover between Thermodynacic and Nonequilibrium Scenarios of Structural Transformations under Compression of Ih N2O ice, Zh. Eksp. Teor. Fiz., 2002, vol. 21, no. 2, pp. 335–346.

    Google Scholar 

  • MacDowell, L.G., Sanz, E., Vega, C., and Abascal, J.L.F., Combinatorial Entropy and Phase Diagram of Partially Ordered Ice Phases, J. Chem. Phys., 2004, vol. 121, pp. 10145–10158.

    Article  ADS  Google Scholar 

  • Maeno, N., Nauka o L’de (Ice Science), Moscow: Mir, 1988.

    Google Scholar 

  • Marov, M.Ya., Physical Properties and Comet Models, Astron. Vestn, 1994, vol. 28, nos. 4–5, pp. 5–85 [Sol. Syst. Res. (Engl. Transl.), vol. 28, nos. 4–5].

    ADS  Google Scholar 

  • Matsuo, T., Tajima, Y., and Suga, H., Calorimetric Study of a Phase Transition in D2O Ice Ih Doped with KOD: Ice XI, J. Phys. and Chem. of Solids, 1986, vol. 47, no. 2, pp. 165–173.

    Article  ADS  Google Scholar 

  • Mishima, O. and Endo, S. Melting Curve of Ice VII, J. Chem. Phys., 1978, vol. 68, no. 10, pp. 4417–4418.

    Article  ADS  Google Scholar 

  • Mishima, O., Calvert, L.D., and Whalley, E. ’Melting Ice’ I at 77 K and 10 kbar: A New Method of Making Amorphous Solids, Nature, 1984, vol. 310, pp. 393–395.

    Article  ADS  Google Scholar 

  • Mishima, O., Reversible First-Order Transition between Two H2O Amorphs at ∼0.2 GPa and ∼135 K, J. Chem. Phys., 1994, vol. 100, no 8, pp. 5910–5912.

    Article  ADS  Google Scholar 

  • Mishima, O., Relationship between Melting and Amorphization of Ice, Nature, 1996, vol. 384, pp. 546–549.

    Article  ADS  Google Scholar 

  • Nada, H. and van der Eerden, J.P.J.M., An Intermolecular Potential Model for the Simulation of Ice and Water near the Melting Point: A Six-Site Model of H2O, J. Chem. Phys., 2003, vol. 118, pp. 7401–7413.

    Article  ADS  Google Scholar 

  • Nagornov, O.V. and Chizhov, V.E., Thermodynamic Properties of Ice, Water, and Their Mixture at High Pressures, Prikl. Mekh. Tekh. Fiz., 1990, vol. 3, pp. 41–48.

    Google Scholar 

  • Narten, A.H., Venkatesh, C.G., and Rice, S.A., Diffraction Pattern and Structure of Amorphous Solid Water at 10 and 77 K, J. Chem. Phys., 1976, vol. 64, pp. 1106–1121.

    Article  ADS  Google Scholar 

  • Nishibata, K. and Whalley, E. Thermal Effects of the Transformation Ice III–IX, J. Chem. Phys., 1974, vol. 60, pp. 3189–3194.

    Article  ADS  Google Scholar 

  • Noya, E.G., Menduina, C., Aragones, J.L. and Vega, C., Equation of State, Thermal Expansion Coefficient, and Isothermal Compressibility for Ices Ih, II, III, V, and VI, as Obtained from Computer Simulation, J. Phys. Chem. C, 2007, vol. 111, no. 43, pp. 15877–15888.

    Article  Google Scholar 

  • Oguro, M. and Whitworth, R.W., Dielectric Observations of the Transformation of Single Crystals of KOH-Doped Ice Ih to Ice XI, J. Phys. and Chemistry of Solids, 1991, vol. 52, no. 2, pp. 401–403.

    Article  ADS  Google Scholar 

  • Petrenko, V.F. and Whitworth, R.W., Physics of Ice, Cambridge: Oxford Univ. Press, 1999, p. 373.

    Google Scholar 

  • Pistorius, C.W.F.T., Pistorius, M.C., Blakey, J.P., and Admiraal, L.J., Melting Curve of Ice VII to 200 kbar, J. Chem. Phys., 1963, vol. 38, no. 3, pp. 600–602.

    Article  ADS  Google Scholar 

  • Pistorius, C.W.F.T., Rapoport, E., and Clark, J.B., Phase Diagrams of H2O and D2O at High Pressures, J. Chem. Phys., 1968, vol. 48, pp. 5509–5514.

    Article  ADS  Google Scholar 

  • Pruzan, Ph., Chervin, J.C., and Canny, B., Stability Domain of the Ice VIII Proton-Ordered Phase at Very High Pressure and Low Temperature, J. Chem. Phys., 1993, vol. 99, pp. 9842–9846.

    Article  ADS  Google Scholar 

  • Pruzan, Ph., Pressure Effects on the Hydrogen Bond in Ice up to 80 GPa, J. Mol. Struct., 1994, vol. 322, pp. 279–286.

    Article  ADS  Google Scholar 

  • Pruzan, Ph., Wolanin, E., Gauthier, M., et al., Raman Scattering and X-Ray Diffraction of Ice in the Megabar Range. Occurrence of a Symmetric Disordered Solid above 62 GPa, J. Phys. Chem. B., 1997, vol. 101, pp. 6230–6233.

    Article  Google Scholar 

  • Pruzan, Ph., Chervin, J. C., Wolanin, E., et al., Phase Diagram of Ice in the VII-VIII-X Domain. Vibrational and Structural Data for Strongly Compressed Ice VIII, J. Raman Spectrosc., 2003, vol. 34, pp. 591–610.

    Article  ADS  Google Scholar 

  • Putrino, A. and Parrinello, M., Anharmonic Raman Spectra in High-Pressure Ice from Ab Initio Simulations, Phys. Rev. Lett., 2002, vol. 88, no. 17, p. 176401.

    Article  ADS  Google Scholar 

  • Salzmann, C.G., Kohl, I., Loerting, T., et al., Pure Ices IV and XII from High-Density Amorphous Ice, Can. J. Phys., 2003a, vol. 81, pp. 25–32.

    Article  ADS  Google Scholar 

  • Salzmann, C.G., Kohl, I., Loerting, T., et al., Raman Spectroscopic Study on Hydrogen Bonding in Recovered Ice IV, J. Phys. Chem. B., 2003b, vol. 107, pp. 2802–2807.

    Article  Google Scholar 

  • Salzmann, C.G., Radaelli, P.G., Hallbrucker, A., et al., The Preparation and Structure of Hydrogen Ordered Phases of Ice, Science, 2006, vol. 311, pp. 1758–1761.

    Article  ADS  Google Scholar 

  • Sanz, E., Vega, C., Abascal, J.L., and MacDowell, L.G., Phase Diagram of Water from Computer Simulation, Phys. Rev. Lett, 2004, vol. 92, pp. 255701–255704.

    Article  ADS  Google Scholar 

  • Saul, A. and Wagner, W., A Fundamental Equation for Water Coating the Range from the Melting Line to 1273 K at Pressures up to 25000 MPa, J. Phys. Chem. Ref. Data, 1989, vol. 18, no. 4, pp. 1537–1564.

    ADS  Google Scholar 

  • Savel’ev, B.A., Fizika, Khimiya i stroenie prirodnykh l’dov i merzlykh porod (Physics, Chemistry and Structure of Natural Ices and Frozen Rocks), Moscow: Mosk. Gos. Univ., 1971.

    Google Scholar 

  • Schwager, B., Chudinovskikh, L., Gavriliuk, A., and Boehler, R., Melting Curve of H2O to 90 GPa Measured in a Laser-Heated Diamond Cell, J. Phys.: Condens. Matter, 2004, vol. 16, pp. 1177–1179.

    Article  ADS  Google Scholar 

  • Schwager, B. and Boehler, R., H2O: Another Ice Phase and Its Melting Curve, High Pressure Res., 2008, vol. 28, pp. 431–433.

    Article  ADS  Google Scholar 

  • Schwegler, E., Sharma, M., Gygi, F., and Galli, G., Melting of Ice under Pressure, Proc. Nat. Acad. Sci. United States of America, 2008, vol. 105, no. 39, pp. 14779–14783.

    Article  ADS  Google Scholar 

  • Shaw, G.H., Elastic Properties and Equation of State of High Pressure Ice, J. Chem. Phys., 1986, vol. 84, no. 10, pp. 5862–5868.

    Article  ADS  Google Scholar 

  • Sohl, F., Spohn, T., Breuer, D., and Nagel, K., Implications from Galileo Observations on the Interior Structure and Chemistry of the Galilean satellites, Icarus, 2002, vol. 157, pp. 104–119.

    Article  ADS  Google Scholar 

  • Somayazulu, M., Shu, J., Zha, C., and Goncharov, A.F., In situ High-Pressure X-Ray Diffraction Study of H2O Ice VII, J. Chem. Phys., 2008, vol. 128, p. 064510.

    Article  ADS  Google Scholar 

  • Song, M., Yamawaki, H., Fujihisa, H., et al., Infrared Absorption Study of Fermi Resonance and Hydrogen-Bond Symmetrization of Ice up to 141 GPa, Phys. Rev. B., 1999, vol. 60, pp. 12644–12650.

    Article  ADS  Google Scholar 

  • Song, M., Yamawaki, H., Fujihisa, H., et al., Infrared Investigation on Ice VII and the Phase Diagram of Dense Ices, Phys. Rev. B., 2003, vol. 68, no. 1, p. 014106.

    Article  ADS  Google Scholar 

  • Suga, H., A Facet of Recent Ice Sciences, Thermochim. Acta., 1997, vol. 300, pp. 117–126.

    Article  Google Scholar 

  • Sundberg, S., Optical and Raman Spectroscopic Studies on H 2 O at High Pressure, Theses, Uppsala: Univ. Sweden, 2005, p. 77.

    Google Scholar 

  • Tajima, Y., Matsuo T., and Suga H., Calorimetric Study of Phase Transition in Hexagonal Ice Doped with Alkali Hydroxides, J. Phys. and Chem. Solids, 1984, vol. 45, nos. 11–12, pp. 1135–1144.

    Article  ADS  Google Scholar 

  • Tari, Ö., Yurtseven, H., and Salihoğlu, S. Calculation of a Phase Diagram for the Ice II-V-VI Transitions, Calphad, 2000, vol. 24, no. 4, pp. 475–482.

    Article  Google Scholar 

  • Tchijov, V., Keller, J., Rodríguez-Romo, S., and Nagornov, O., Kinetics of Phase Transitions Induced by Shock-Wave Loading in Ice, J. Phys. Chem. B., 1997, vol. 101, pp. 6215–6218.

    Article  Google Scholar 

  • Tchijov, V., Ayala, R.B., León, G.C., and Nagornov, O., Thermodynamics of High-Pressure Ice Polymorphs: Ices III and V, J. Phys. and Chem. Solids, 2004, vol. 65, pp. 1277–1283.

    Article  ADS  Google Scholar 

  • Tulk, C.A., Gagnon, R.E., Kiefte, H., and Clouter, M.J., The Pressure Dependence of the Elastic Constants of Ice III and Ice VI, J. Chem. Phys., 1997, vol. 107, no. 24, pp. 10684–10690.

    Article  ADS  Google Scholar 

  • Vega, C., Abascal, J.L.F., Sanz, E., et al., Can Simple Models Describe the Phase Diagram of Water? J. Phys.: Condens. Matter, 2005a, vol. 17, pp. 3283–3288.

    Article  ADS  Google Scholar 

  • Vega, C., McBride, C., Sanz, E., and Abascal, J.L.F., Radial Distribution Functions and Densities for the SPC/E, TIP4P and TIP5P Models for Liquid Water and Ices Ih, Ic, II, III, IV, V, VI, VII, VIII, IX, XI, and XII, Phys. Chem. Chem. Phys, 2005b, vol. 7, pp. 1450–1456.

    Article  Google Scholar 

  • Vega, C., Sanz, E., and Abascal, J.L.F., The Melting Temperature of the Most Common Models of Water, J. Chem. Phys, 2005c, vol. 122, pp. 114507–114516.

    Article  ADS  Google Scholar 

  • Wagner, W. and Pruβ, A. The IAPWS Formulation 1995 for the Thermodynamic Properties of Ordinary Water Substance for General and Scientific Use, J. Phys. Chem., 2002, vol. 31, pp. 387–535.

    Google Scholar 

  • Whalley, E., Heath, J.B.R., and Davidson, D.W., Ice IX: An Antiferroelectric Phase Related to Ice III, J. Chem. Phys., 1968, vol. 48, no. 5, pp. 2362–2370.

    Article  ADS  Google Scholar 

  • Wolanin, E., Pruzan, Ph., Chervin, J.C, et al., Equation of State of Ice VII up to 106 GPa, Phys. Rev. B., 1997, vol. 56, no. 10, pp. 5781–5785.

    Article  ADS  Google Scholar 

  • Yamamuro, O., Oguni, M., Matsuo, T., and Suga, H., High-Pressure Calorimetric Study on the Ice XI-Ih Transition, J. Chem. Phys., 1987, vol. 86, no. 9, pp. 5137–5140.

    Article  ADS  Google Scholar 

  • Yoshimura, Y., Stewart, S., Somayazulu, M., et al., High-Pressure X-Ray Diffraction and Raman Spectroscopy of Ice VIII, J. Chem. Phys., 2006, vol. 124, p. 24502.

    Article  Google Scholar 

  • Yurtseven, H. and Salihoğlu, S., A Phase Diagram for the Ice VI-VII-VIII Transitions, Mod. Phys. Lett. B, 1998, vol. 12, pp. 271–279.

    Article  ADS  Google Scholar 

  • Zha, C.S., Hemley, R.J., Gramsch, S.A., et al., Optical Study of H2O Ice to 120 GPa: Dielectric Function, Molecular Polarizability, and Equation of State, J. Chem. Phys. 2007, vol. 126, p. 074506.

    Article  ADS  Google Scholar 

  • Zheligovskaya, E.A. and Malenkov, G.G., Crystal Water Ices, Usp. Khim., 2006, vol. 75, no. 1, pp. 64–85.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.N. Dunaeva, D.V. Antsyshkin, O.L. Kuskov, 2010, published in Astronomicheskii Vestnik, 2010, Vol. 44, No. 3, pp. 222–243.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dunaeva, A.N., Antsyshkin, D.V. & Kuskov, O.L. Phase diagram of H2O: Thermodynamic functions of the phase transitions of high-pressure ices. Sol Syst Res 44, 202–222 (2010). https://doi.org/10.1134/S0038094610030044

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094610030044

Keywords

Navigation