Skip to main content
Log in

Fabrication of Calcium Phosphate Bioceramics with a Uniform Distribution of Pores of a Given Size

  • ADVANCED MATERIALS AND TECHNOLOGIES
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The problem of producing biodegradable implants based on calcium phosphate porous ceramics is being solved. Highly porous ceramics with a uniform distribution of pores of a specified size is fabricated by slip casting from a suspension containing tricalcium phosphate Ca3(PO4)2 and polymeric granules 50–100 μm in size in amounts of 20 and 50 vol %, respectively, followed by heat treatment. For the chosen sintering parameters, the porosity of the ceramics is not lower than 40% and its tensile strength and biocompatibility satisfy the corrsponding requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. S. M. Barinov, “Ceramic and composite materials based on calcium phosphates for medicine,” Usp. Khim. 79, No. 1, 15–32 (2010).

    Article  Google Scholar 

  2. L. L. Hench and I. Thompson, “Twenty-first century challenges for biomaterials,” J. R. Soc. Interface 7 (4), 379–391 (2010).

    Article  Google Scholar 

  3. M. Navarro, A. Michiardi, O. Castano, and J. Planell, “Biomaterials in orthopaedics,” J. R. Soc. Interface 5 (27), 1137–1158 (2008).

    Article  CAS  Google Scholar 

  4. M. Bohner and J. Lemaitre, “Can bioactivity be tested in vitro with SBF solution?”, Biomaterials 30 (12), 2175–2179 (2009).

    Article  CAS  Google Scholar 

  5. T. Albrektsson and C. Johansson, “Osteoinduction, osteoconduction and osseointegration,” Eur. Spine J. 10, 96–101 (2001).

    Article  Google Scholar 

  6. S. J. Simske, R. A. Ayers, T. A. Bateman, “Porous materials for bone engineering,” Mater. Sci. Forum 250, 151–182 (1997).

    Article  CAS  Google Scholar 

  7. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y. M. Xie, “Topological design and additive manufacturing of porous metals for bone scaffolds and orthopaedic implants: a review,” Biomaterials 83, 127–141 (2016).

    Article  CAS  Google Scholar 

  8. K. A. Hing, “Bioceramic bone graft substitutes: influence of porosity and chemistry,” Int. J. Appl. Ceram. Technol. 2 (3), 184–199 (2005).

    Article  CAS  Google Scholar 

  9. K. A. Hing, “Bone repair in the twenty-first century: biology, chemistry or engineering,” Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci. 362 (1825), 2821–2850 (2004).

  10. R. Gauvin, Y.-C. Chen, J. W. Lee, R. Soman, P. Zorlutuna, J. W. Nichol, H. Bae, Sh. Chen, and A. Khademhosseini, “Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography,” Biomaterials 33 (15), 3824–3834 (2012).

    Article  CAS  Google Scholar 

  11. O. Lyckfeldt and J. M. F. Ferreira, “Processing of porous ceramics by ‘starch consolidation’,” J. Eur. Ceram. Soc. 18 (2), 131–140 (1998).

    Article  CAS  Google Scholar 

  12. R. Liu, T. Xu, and C. Wang, “A review of fabrication strategies and applications of porous ceramics prepared by freeze-casting method,” Ceram. Int. 42 (2), 2907–2925 (2016).

    Article  CAS  Google Scholar 

  13. U. Deisinger, “Generating porous ceramic scaffolds processing and properties,” Key Eng. Mater. 441, 155–179 (2010).

    Article  CAS  Google Scholar 

  14. C. Galassi, “Processing of porous ceramics piezoelectric materials,” J. Eur. Ceram. Soc. 26 (14), 2951–2958 (2006).

    Article  CAS  Google Scholar 

  15. M. Khodaei, A. Valanezhad, and I. Watanabe, “Fabrication and characterization of porous β-tricalcium phosphate scaffold for bone regeneration,” J. Environ. Friendly Mater. 2 (2), 1–4 (2018).

    Google Scholar 

  16. N. Koç, M. Timuçin, and F. Korkusuz, “Fabrication and characterization of porous tricalcium phosphate ceramics,” Ceram. Int. 30 (2), 205–211 (2004).

    Article  Google Scholar 

  17. P. S. Eggli, W. Muller, and R. K. Schenk, “Porous hydroxyapatite and tricalcium phosphate cylinders with two different pore size ranges implanted in the cancellous bone of rabbits. A comparative histomor-phometric and histologic study of bony ingrowth and implant substitution,” Clin. Orthopaed. 232, 127–138 (1988).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Experiments were carried out using the equipment purchased in the framework of a development program for Moscow State University.

Funding

This work was supported by the Russian Science Foundation, project no. 18-79-00256.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Tikhonova.

Additional information

Translated by E. Yablonskaya

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tikhonova, S.A., Evdokimov, P.V., Prosvirnin, D.V. et al. Fabrication of Calcium Phosphate Bioceramics with a Uniform Distribution of Pores of a Given Size. Russ. Metall. 2021, 381–385 (2021). https://doi.org/10.1134/S0036029521040339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521040339

Keywords:

Navigation