Skip to main content
Log in

Correlation dependence of the volumetric thermal expansion coefficient of metallic aluminum on its heat capacity

  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

The correlation between the volumetric thermal expansion coefficient β(T) and the heat capacity C(T) of aluminum is considered in detail. It is shown that a clear correlation is observed in a significantly wider temperature range, up to the melting temperature of the metal, along with the low-temperature range where it is linear. The significant deviation of dependence β(C) from the low-temperature linear behavior is observed up to the point where the heat capacity achieves the classical Dulong–Petit limit of 3R (R is the universal gas constant).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Pathak and N. P. Shah, “Debye temperature of silver and aluminum at high temperatures—some new correlations,” Phys. Stat. Sol. A 55 (2), K159–K162 (1979).

    Article  Google Scholar 

  2. V. Yu. Bodryakov and V. M. Zamyatin, “Peculiarities of thermodynamic functions of solid-state aluminum,” Russian Metallurgy (Metally), No. 4, 123–128 (1999).

    Google Scholar 

  3. V. Yu. Bodryakov and A. A. Powzner, Self-Consistent Thermodynamic Model of Crystal Lattice of a Solid: Part 2. Nonferromagnetic Metals (UGTU–UPI, Yekaterinburg, 2003).

    Google Scholar 

  4. W. F. Glaque and P. F. Meads, “The heat capacities and entropies of aluminum and copper from 15 to 300 K,” J. Amer. Chem. Soc. 63 (7), 1897–1901 (1941).

    Article  Google Scholar 

  5. T. E. Pochapsky, “Heat capacity and resistance measurements of aluminum and lead wires,” Acta Metallurgica 1 (11), 747–751 (1953).

    Article  Google Scholar 

  6. K. K. Kelley, Contributions to the Data on Theoretical Metallurgy XIII: High Temperature Heat Content, Heat Capacity and Entropy Data for the Elements and Inorganic Compounds (US Government Printing Office, Washington, 1960).

    Google Scholar 

  7. R. J. Corruccini and J. J. Guiewek, “Specific heats of technical solids at low temperatures: a compilation from the literature,” in National Bureau of Standard Monograph NBS-21 (US Government Printing Office, Washington, 1960).

    Google Scholar 

  8. A. J. Leadbetter, “Anharmonic effects in the thermodynamic properties of solids. 1. An adiabatic calorimeter for the temperature range 25–500°C: the heat capacities of Al2O3, Al, and Pb,” J. Phys. C.: Solid State Phys. 1 (6), 1481–1488 (1968).

    Article  Google Scholar 

  9. C. R. Brooks and R. E. Bingham, “The specific heat of aluminum from 330 to 890 K and contributions from the formation of vacancies and anharmonic effects,” J. Phys. Chem. Solids 29 (9), 1553–1560 (1968).

    Article  Google Scholar 

  10. E. N. Buyco and F. E. Davis, “Specific heat of aluminum from zero to its melting temperature and beyond. Equation for representation of the specific heats of solids,” J. Chem. Eng. Data 15 (4), 518–523.

  11. L. A. Novitskii and I. G. Kozhevnikov, Thermal-Physical Properties of Materials at Low Temperatures: A Handbook (Mashinostroenie, Moscow, 1975).

    Google Scholar 

  12. R. A. Robie, B. S. Hemingway, and J. R. Fisher, “Thermodynamic properties of minerals and related substances at 298.15 K (25°C) and one-atmosphere (1.013 Bars) pressure and at higher temperatures,” in Geological Survey Bulletin (US Government Printing Office, Washington, 1979), No. 1452.

  13. D. B. Downie and J. F. Martin, “An adiabatic calorimeter for heat-capacity measurements between 6 and 300 K,” J. Chem. Thermodyn. 12 (8), 779–786 (1980).

    Article  Google Scholar 

  14. L. V. Gurvich, I. V. Veits, V. A. Medvedev, et al., Thermodynamic Properties of Individual Materials: A Handbook (Nauka, Moscow, 1981), Vol. III.

  15. M. E. Drits, P. B. Budberg, G. S. Burkhanov, A. M. Drits, and V. M. Panovko, Properties of Elements, Ed. by M. E. Drits (Metallurgiya, Moscow, 1985).

  16. D. A. Ditmars, C. A. Plint, and R. C. Shukla, “Aluminum. 1. Measurement of the relative enthalpy from 273 to 929 K and derivation of thermodynamic functions for Al(s) from 0 K to its melting point,” Intern. J. Thermophys. 6 (5), 499–515 (1985).

    Article  Google Scholar 

  17. P. D. Desai, “Thermodynamic properties of aluminum,” Intern. J. Thermophys. 8 (5), 621–628 (1987).

    Article  Google Scholar 

  18. Y. Takahashi, T. Azumi, and Y. Sekine, “Heat capacity of aluminum from 80 to 880 K,” Thermochimica Acta 139 (1), 133–137 (1989).

    Article  Google Scholar 

  19. Physical Quantities: A Handbook, Ed. by I. S. rigor’ev and E. Z. Meilikhov (Energoatomizdat, Moscow, 1991).

  20. M. W. Chase, Jr., “NIST–JANAF Thermochemical Tables,” in J. Phys. Chem. Ref. Data, (1998), Monograph 9, pp. 1–1951.

    Google Scholar 

  21. A. T. Dinsdale, SGTE Data for Pure Elements (NPL (National Physical Laboratory, Teddington, 2007).

    Google Scholar 

  22. Tables of Physical and Chemical Constants (National Physical Laboratory). http://www.kayelaby.npl.co.uk/general_physica/2_3/2_3_6.html

  23. A. J. C. Wilson, “The thermal expansion of aluminum from 0 to 650°C,” Proc. Phys. Soc. 53 (3), 235–244 (1941).

    Article  Google Scholar 

  24. F. C. Nix and D. MacNair, “The thermal expansion of pure metals: copper, gold, aluminum, nickel, and iron,” Phys. Rev. 60 (10), 597–605 (1941).

    Article  Google Scholar 

  25. E. Huzan, C. P. Abbiss, and G. O. Jones, “Thermal expansion of aluminum at low temperatures,” Phil. Mag. 6 (62), 277–285 (1961).

    Article  Google Scholar 

  26. K. Andres, “The measurement of thermal expansion of metals at low temperatures,” Cryogenics 2 (2), 93–97 (1961).

    Article  Google Scholar 

  27. R. J. Corruccini and J. J. Gnievek, Thermal Expansion of Technical Solids at Low Temperatures: A Compilation from Literature (US Government Printing Office, Washington, 1961).

    Google Scholar 

  28. R. M. Nicklow and R. A. Young, “Thermal expansion of silver chloride,” Phys. Rev. 129 (5), 1936–1943 (1963).

    Article  Google Scholar 

  29. R. H. Carr and C. A. Swenson, “Application of a variable transformer to the study of low temperature thermal expansion,” Cryogenics 4 (2), 76–82 (1964).

    Article  Google Scholar 

  30. D. B. Fraser and A. C. Hollis Hallett, “The coefficient of thermal expansion of various cubic metals below 100 K,” Can. J. Phys. 43 (2), 193–219 (1965).

    Article  Google Scholar 

  31. A. J. Leadbetter, “Anharmonic effects in the thermodynamic properties of solids II. Analysis of data for lead and aluminum,” J. Phys. C: Solid State Phys. 1 (6), 1489–1504 (1968).

    Article  Google Scholar 

  32. P. D. Pathak and N. D. Vasavada, “Thermal expansion and the law of corresponding states,” J. Phys. C: Solid State Phys. 3 (2), L44–L47 (1970).

    Article  Google Scholar 

  33. M. E. Straumanis and C. L. Woodward, “Lattice parameters and thermal expansion coefficients of Al, Ag, and Mo at low temperatures. Comparison with dilatometric data,” Acta Cryst. A 27 (6), 549–551 (1971).

    Article  Google Scholar 

  34. F. G. Awad and D. Gugan, “The thermal expansion of copper, aluminum, potassium chloride, and potassium iodide between 10 and 80 K,” Cryogenics 11 (5), 414–415 (1971).

    Article  Google Scholar 

  35. J. G. Collins, G. K. White, and S. A. Swenson, “The thermal expansion of aluminum below 35 K,” J. Low Temp. Phys. 10 (1–2), 69–77 (1973).

    Article  Google Scholar 

  36. S. I. Novikov, Thermal Expansion of Solids (Nauka, Moscow, 1974).

    Google Scholar 

  37. Y. S. Touloukian, R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermal Expansion of Metallic Elements and Alloys in Thermodynamic Properties of Matter (IFI/Plenum, New York, 1975), Vol.12.

  38. F. R. Kroeger and C. A. Swenson, “Absolute linear thermal-expansion measurements on copper and aluminum from 5 to 320 K,” J. Appl. Phys. 48 (3), 853–864 (1977).

    Article  Google Scholar 

  39. B. Hallstedt, “Molar volumes of Al, Li, Mg, and Si,” Calphad 31 (2), 292–302 (2007).

    Article  Google Scholar 

  40. Tables of Physical and Chemical Constants (National Physical Laboratory). http://www.kayelaby.npl.co.uk/general_physica/2_3/2_3_5.html

  41. G. Korn and T. Korn Mathematical Handbook for Sciences and Engineers. Definitions, Theorems, and Formulas for References and Review (McGraw-Hill, Inc. New York, 1968).

    Google Scholar 

  42. V. Yu. Bodryakov, “On correlation between temperature dependences of the thermal expansion and the heat capacity up to melting point of a refractory metal: molybdenum,” Teplofiz, Vys. Temp. 52 (6), 863–869 (2014).

    Google Scholar 

  43. V. Yu. Bodryakov, “On correlation between temperature dependences of the heat capacity and thermal expansivity of cubic Pt-metals (following to the John Arblaster’s evalutions),” Open Sci. J. Mod. Phys. 2 (1), 10–13 (2015).

    Google Scholar 

  44. V. Yu. Bodryakov and Yu. N. Babintsev, “Correlation analysis of the heat capacity and thermal expansion of solid mercury,” Phys. Sol. States 57 (6), 1264–1268 (2015).

    Article  Google Scholar 

  45. G. N. Katt and G. A. Alers, “Low-temperature elastic moduli of aluminum,” J. Appl. Phys. 35 (2), 327–330 (1964).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Yu. Bodryakov.

Additional information

Original Russian Text © V.Yu. Bodryakov, A.A. Bykov, 2016, published in Metally, 2016, No. 3, pp. 61–66.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bodryakov, V.Y., Bykov, A.A. Correlation dependence of the volumetric thermal expansion coefficient of metallic aluminum on its heat capacity. Russ. Metall. 2016, 450–454 (2016). https://doi.org/10.1134/S0036029516050074

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029516050074

Navigation