Skip to main content
Log in

Formation of Active Centers of Nickel–Zinc Catalysts Deposited on the Nanodiamond for the Selective Hydrogenation of Phenylacetylene

  • IN COMMEMORATION OF ACADEMICIAN V.V. LUNIN: SELECTED CONTRIBUTIONS FROM HIS STUDENTS AND COLLEAGUES
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A study is performed of bimetallic catalysts NiZn/ND with ratios Ni : Zn = 1 : 1 and 1 : 3 prepared by impregnation using detonation nanodiamond (ND) as a support. They were compared with monometallic Ni/ND and Zn/ND. It is shown by nitrogen adsorption/desorption, scanning and transmission electron microscopy that metal deposition does not affect the porous structure or morphology of a support. Coordination of metal precursors on a nanodiamond surface proceeds with the participation of functional groups, as is confirmed by a change in the electrokinetic charge of the surface. The reduction of metal precursors is studied by temperature-programmed reduction and in situ XAFS spectroscopy. In Ni-containing samples, two forms of Ni2+ are found that are bonded differently with the support. ZnO is not reduced in the samples upon treatment with hydrogen at temperatures up to 400°C. The fraction of reduced nickel is determined by analyzing XANES spectra. Virtually full reduction of nickel is observed in a catalyst with a Ni : Zn ratio of 1 : 1 after 4 h of in situ treatment with hydrogen inside a spectrometer cell at 400°C, but not at a Ni : Zn ratio of 1 : 3 under the same conditions. The highest selectivity of styrene formation in the reaction of phenylacetylene hydrogenation throughout the investigated range of temperatures (100–350°С) is ensured by NiZn/ND; NiZn3/ND is less active and selective, since ZnO closes the active nickel centers and prevents the adsorption of phenylacetylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. N. Gupta, Q. Wang, G. Wen, and D. Su, in Nanodiamonds for Catalytic Reactions, Ed. by J.-C. Arnault (Elsevier, Amsterdam, 2017), Chap. 18, p. 439. https://doi.org/10.1016/B978-0-32-343029-6.00019-2

  2. E. V. Golubina, E. S. Lokteva, A. V. Erokhin, et al., J. Catal. 344, 90 (2016). https://doi.org/10.1016/j.jcat.2016.08.017

    Article  CAS  Google Scholar 

  3. N. N. Vershinin, O. N. Efimov, V. A. Bakaev, et al., Fullerenes, Nanotubes Carbon Nanostruct. 19, 63 (2010). https://doi.org/10.1080/1536383x.2010.490143

    Article  Google Scholar 

  4. V. Mavrodinova, M. Popova, I. Kolev, et al., Appl. Surf. Sci. 253, 7115 (2007). https://doi.org/10.1016/j.apsusc.2007.02.090

    Article  CAS  Google Scholar 

  5. T. Tsoncheva, V. Mavrodinova, L. Ivanova, et al., J. Mol. Catal. A 259, 223 (2006). https://doi.org/10.1016/j.molcata.2006.06.019

    Article  CAS  Google Scholar 

  6. E. S. Lokteva, E. V. Golubina, S. A. Kachevskii, et al., Kinet. Catal. 52, 145 (2011). https://doi.org/10.1134/S0023158411010125

    Article  CAS  Google Scholar 

  7. E. S. Lokteva and E. V. Golubina, Pure Appl. Chem. 91, 609 (2019). https://doi.org/10.1515/pac-2018-0715

    Article  CAS  Google Scholar 

  8. W. W. Lonergan, D. G. Vlachos, and J. G. Chen, J. Catal. 271, 239 (2010). https://doi.org/10.1016/j.jcat.2010.01.019

    Article  CAS  Google Scholar 

  9. A. Borodzinski and G. C. Bond, Catal. Rev. 50, 379 (2008). https://doi.org/10.1080/01614940802142102

    Article  CAS  Google Scholar 

  10. W. Huang, J. R. McCormick, R. F. Lobo, and J. G. Chen, J. Catal. 246, 40 (2007). https://doi.org/10.1016/j.jcat.2006.11.013

    Article  CAS  Google Scholar 

  11. R. A. Basimova, M. L. Pavlov, S. I. Myachin, et al., Pet. Chem. 49, 360 (2009). https://doi.org/10.1134/S096554410905003X

    Article  Google Scholar 

  12. D. Deng, Y. Yang, Y. Gong, et al., Green Chem. 15, 2525 (2013). https://doi.org/10.1039/c3gc40779a

    Article  CAS  Google Scholar 

  13. S. Dominguez-Dominguez, A. Berenguer-Murcia, A. Linares-Solano, D. Cazorla-Amoros, J. Catal. 257, 87 (2008). https://doi.org/10.1016/j.jcat.2008.04.008

    Article  CAS  Google Scholar 

  14. P. V. Markov, I. S. Mashkovsky, G. O. Bragina, et al., Chem. Eng. J. 358, 520 (2019). https://doi.org/10.1016/j.cej.2018.10.016

    Article  CAS  Google Scholar 

  15. P. Weerachawanasak, O. Mekasuwandumrong, M. Arai, et al., J. Catal. 262, 199 (2009). https://doi.org/10.1016/j.jcat.2008.12.011

    Article  CAS  Google Scholar 

  16. G. Carturan, G. Cocco, G. Facchin, and G. Navazio, J. Mol. Catal. 26, 375 (1984). https://doi.org/10.1016/0304-5102(84)85111-1

    Article  CAS  Google Scholar 

  17. B. A. Wilhite, M. J. McCready, and A. Varma, Ind. Eng. Chem. Res. 41, 3345 (2002). https://doi.org/10.1021/ie0201112

    Article  CAS  Google Scholar 

  18. W. Huang, W. Pyrz, R. F. Lobo, and J. G. Chen, Appl. Catal. A 333, 254 (2007). https://doi.org/10.1016/j.apcata.2007.09.017

    Article  CAS  Google Scholar 

  19. Y. He, Y. Liu, P. Yang, et al., J. Catal. 330, 61 (2015). https://doi.org/10.1016/j.jcat.2015.06.017

    Article  CAS  Google Scholar 

  20. S. Dominguez-Dominguez, A. Berenguer-Murcia, D. Cazorla-Amoros, and A. Linares-Solano, J. Catal. 243, 74 (2006). https://doi.org/10.1016/j.jcat.2006.06.027

    Article  CAS  Google Scholar 

  21. W. Donphai, T. Kamegawa, M. Chareonpanich, and H. Yamashita, Ind. Eng. Chem. Res. 53, 10105 (2014). https://doi.org/10.1021/ie5014597

    Article  CAS  Google Scholar 

  22. X. Chen, A. Zhao, Z. Shao, et al., J. Phys. Chem. C 114, 16525 (2010). https://doi.org/10.1021/jp1050832

    Article  CAS  Google Scholar 

  23. F. Huang, Z. Jia, J. Diao, et al., J. Energy Chem. 33, 31 (2019). https://doi.org/10.1016/j.jechem.2018.08.006

    Article  Google Scholar 

  24. Y. Sun, B. Luo, S. Xu, et al., Chem. Phys. Lett. 723, 39 (2019). https://doi.org/10.1016/j.cplett.2019.03.015

    Article  CAS  Google Scholar 

  25. C. S. Spanjers, J. T. Held, M. J. Jones, et al., J. Catal. 316, 164 (2014). https://doi.org/10.1016/j.jcat.2014.05.007

    Article  CAS  Google Scholar 

  26. F. Studt, F. Abild-Pedersen, T. Bligaard, et al., Sci. 320, 1320 (2008). https://doi.org/10.1126/science.1156660

    Article  CAS  Google Scholar 

  27. L. Yang, S. Yu, C. Peng, et al., J. Catal. 370, 310 (2019). https://doi.org/10.1016/j.jcat.2019.01.012

    Article  CAS  Google Scholar 

  28. H. Takahashi, Y. Sunagawa, S. Myagmarjav, et al., Mater. Trans. 44, 2414 (2003). https://doi.org/10.2320/matertrans.44.2414

    Article  CAS  Google Scholar 

  29. S. Myagmarjav, H. Takahashi, Y. Sunagawa, et al., Mater. Trans. 45, 2035 (2004). https://doi.org/10.2320/matertrans.45.2035

    Article  CAS  Google Scholar 

  30. A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res., Sect. A 603, 95 (2009). https://doi.org/10.1016/j.nima.2008.12.167

    Article  CAS  Google Scholar 

  31. A. A. Veligzhanin, Y. V. Zubavichus, A. A. Chernyshov, et al., J. Struct. Chem. 51, 20 (2010). https://doi.org/10.1007/s10947-010-0186-9

    Article  CAS  Google Scholar 

  32. B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005). https://doi.org/10.1107/S0909049505012719

    Article  CAS  Google Scholar 

  33. M. Newville, J. Synchrotr. Rad. 8, 322 (2001). https://doi.org/10.1107/S0909049500016964

    Article  CAS  Google Scholar 

  34. N. Gibson, O. Shenderova, T. J. M. Luo, et al., Diamond Relat. Mater. 18, 620 (2009). https://doi.org/10.1016/j.diamond.2008.10.049

    Article  CAS  Google Scholar 

  35. R. Marsalek, APCBEE Proc. 9, 13 (2014). https://doi.org/10.1016/j.apcbee.2014.01.003

  36. A. Krueger, J. Mater. Chem. 18, 1485 (2008). https://doi.org/10.1039/b716673g

    Article  CAS  Google Scholar 

  37. M. D. McCluskey, S. J. Jokela, and O. W. M. Hlaing, Phys. B (Amsterdam, Neth.) 376–377, 690 (2006). https://doi.org/10.1016/j.physb.2005.12.173

  38. Y.-H. Chin, R. Dagle, J. Hu, et al., Catal. Today 77, 79 (2002). https://doi.org/10.1016/S0920-5861(02)00234-1

    Article  CAS  Google Scholar 

  39. W. Wang, X. Li, Y. Zhang, et al., Catal. Sci. Technol. 7, 4413 (2017). https://doi.org/10.1039/C7CY01119A

    Article  CAS  Google Scholar 

  40. A. N. Baranov, P. S. Sokolov, O. O. Kurakevych, et al., High Press. Res. 28, 515 (2008). https://doi.org/10.1080/08957950802379307

    Article  CAS  Google Scholar 

  41. W. C. Conner and R. J. Kokes, J. Catal. 36, 199 (1975). https://doi.org/10.1016/0021-9517(75)90024-X

    Article  CAS  Google Scholar 

  42. A. B. Anderson and J. A. Nichols, J. Am. Chem. Soc. 108, 4742 (1986). https://doi.org/10.1021/ja00276a010

    Article  CAS  Google Scholar 

  43. J. Timoshenko, A. Anspoks, A. Kalinko, and A. Kuzmin, Phys. Status Solidi C 11, 1472 (2014). https://doi.org/10.1002/pssc.201300615

    Article  CAS  Google Scholar 

  44. D. C. Koningsberger and D. E. Ramaker, in Handbook of Heterogeneous Catalysis, Ed. by G. Ertl, H. Knözinger, F. Schüth, and J. Weitkamp (Wiley-VCH, Weinheim, 2008), p. 774. https://doi.org/10.1002/9783527610049.hetcat0040

    Book  Google Scholar 

  45. Y. Iwasawa, in Series on Synchrotron Radiation Techniques and Applications (World Scientific, Singapore, 1996). https://doi.org/10.1142/2807

  46. J. Timoshenko and A. Kuzmin, Comput. Phys. Comm. 180, 920 (2009). https://doi.org/10.1016/j.cpc.2008.12.020

    Article  CAS  Google Scholar 

  47. D. V. Glyzdova, T. N. Afonasenko, E. V. Khramov, et al., Top. Catal. 63, 139 (2020). https://doi.org/10.1007/s11244-019-01215-9

    Article  CAS  Google Scholar 

  48. J. Wang, H. Jin, W.-H. Wang, et al., ACS Appl. Mater. Interfaces 12, 19581 (2020). https://doi.org/10.1021/acsami.0c03037

    Article  CAS  PubMed  Google Scholar 

  49. Z. Wang, L. Yang, R. Zhang, et al., Catal. Today 264, 37 (2016). https://doi.org/10.1016/j.cattod.2015.08.018

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge support from Lomonosov Moscow State University Program of Development for providing access to the SEM and HR TEM instruments. XAF spectra were ordained at the synchrotron radiation source of the National Research Center “Kurchatov Institute.”

Funding

This work was performed as part of State assignment AAAA-A16-116092810057-8, “Catalysis and Physical Chemistry of Surfaces.” It was funded by the RF Ministry of Education and Science, agreement no. 05.619.21.0015, project RFMEFI61919X0015, within the Federal Target Program “Research and Development in Priority Areas of Developing Russia’s Scientific and Technological Complex, 2014–2020.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Golubina.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golubina, E.V., Lokteva, E.S., Erokhin, A.V. et al. Formation of Active Centers of Nickel–Zinc Catalysts Deposited on the Nanodiamond for the Selective Hydrogenation of Phenylacetylene. Russ. J. Phys. Chem. 95, 492–502 (2021). https://doi.org/10.1134/S0036024421030110

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421030110

Keywords:

Navigation