Skip to main content
Log in

Thermodynamic Properties of a Hyperbranched Pyridine-Containing Polyphenylene in the Range of T → 0 to 650 K

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The thermodynamic properties of amorphous hyperbranched pyridine-containing polyphenylene in the 6 to 650 K range of temperatures are studied for the first time via high-precision adiabatic vacuum calorimetry and differential scanning calorimetry. In the low-temperature range of 9 to 14 K, the polymer shows an anomalous change in heat capacity resembling the G transition in its shape. An exothermic effect is detected starting at T = 400 K, and is thought to be due to cross-linking in the studied sample. Standard thermodynamic functions of the polymer for the range of T → 0 to 400 K and the standard entropy of its formation at T = 298.15 K are calculated from the experimental data by means of classical thermodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Hyperbranched Polymers: Synthesis, Properties, and Applications, Ed. by D. Yan, C. Gao, and H. Frey (Wiley, Hoboken, NJ, 2011).

    Google Scholar 

  2. B. I. Voit and A. Lederer, Chem. Rev. 109, 5924 (2009).

    Article  CAS  Google Scholar 

  3. D. Konkolewicz, M. J. Monteiro, and S. Perrier, Macromolecules 44, 7067 (2011).

    Article  CAS  Google Scholar 

  4. G. R. Newkome and C. D. Shreiner, Polymer 49, 1 (2008).

    Article  CAS  Google Scholar 

  5. A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat’eva, V. M. Myakushev, M. A. Obrezkova, I. B. Meshkov, N. V. Voronina, and O. V. Novozhilov, Polymer Sci., Ser. C 53, 48 (2011).

    Article  CAS  Google Scholar 

  6. A. M. Muzafarov, E. A. Tatarinova, N. V. Vasilenko, et al., in Organosilicon Compounds: Experiment (Physico-Chemical Studies) and Applications, Ed. by V. Ya. Lee (Academic, Cambridge, MA, 2017), p. 323.

    Google Scholar 

  7. X. Zheng, I. R. Oviedo, and L. J. Twyman, Macromolecules 41, 7776 (2008).

    Article  CAS  Google Scholar 

  8. N. Hu, J. Y. Yin, Q. Tang, et al., J. Polym. Sci., Part A 49, 3826 (2011).

    Article  CAS  Google Scholar 

  9. N. Baird, J. W. Dittmar, Y. B. Losovyj, et al., ACS Appl. Mater. Interfaces 9, 2285 (2017).

    Article  CAS  Google Scholar 

  10. W. Wu, R. Tang, Q. Li, et al., Chem. Soc. Rev. 44, 3997 (2015).

    Article  CAS  Google Scholar 

  11. H. Zhang, A. Patel, A. K. Gaharwar, et al., Biomacromolecules 14, 1299 (2013).

    Article  CAS  Google Scholar 

  12. R. Duncan and M. J. Vicent, Adv. Drug Deliv. Rev. 65, 60 (2013).

    Article  CAS  Google Scholar 

  13. S. Li, M. Omi, F. Cartieri, et al., Biomacromolecules 19, 3754 (2018).

    Article  CAS  Google Scholar 

  14. D. H. Wang, P. Mirau, B. Li, et al., Chem. Mater. 20, 1502 (2008).

    Article  CAS  Google Scholar 

  15. Y. Zheng, S. Li, Z. Weng, et al., Chem. Soc. Rev. 44, 4091 (2015).

    Article  CAS  Google Scholar 

  16. S. Ghiyasi, M. G. Sari, M. Shabanian, et al., Prog. Org. Coat. 120, 100 (2018).

    Article  CAS  Google Scholar 

  17. O. G. Zakharova, N. N. Smirnova, A. V. Markin, et al., Thermochim. Acta 468, 61 (2008).

    Article  CAS  Google Scholar 

  18. N. N. Smirnova, Yu. A. Zakharova, V. A. Ruchenin, and O. G. Zamyshlyayeva, Russ. J. Phys. Chem. A 86, 539 (2012).

    Article  CAS  Google Scholar 

  19. B. V. Lebedev, T. G. Kulagina, N. N. Smirnova, et al., J. Therm. Anal. Calorim. 74, 735 (2003).

    Article  CAS  Google Scholar 

  20. N. N. Smirnova, T. G. Kulagina, A. V. Markin, et al., Thermochim. Acta 425, 39 (2005).

    Article  CAS  Google Scholar 

  21. N. N. Smirnova, A. V. Markin, Yu. A. Zakharova, N. V. Kuchkina, A. L. Rusanov, and Z. B. Shifrina, Russ. Chem. Bull. 60, 132 (2011).

    Article  CAS  Google Scholar 

  22. N. N. Smirnova, Yu. A. Zakharova, A. V. Markin, N. V. Kuchkina, E. Yu. Yuzik-Klimova, and Z. B. Shifrina, Russ. Chem. Bull. 62, 2258 (2013).

    Article  CAS  Google Scholar 

  23. N. N. Smirnova, A. V. Markin, L. Ya. Tsvetkova, N. V. Kuchkina, E. Yu. Yuzik-Klimova and Z. B. Shifrina, Russ. J. Phys. Chem. A 90, 887 (2016).

    Article  CAS  Google Scholar 

  24. N. N. Smirnova, A. V. Markin, N. V. Kuchkina, E. Yu. Yuzik-Klimova, A. N. Shushunov and Z. B. Shifrina, Russ. J. Phys. Chem. A 90, 2321 (2016).

    Article  CAS  Google Scholar 

  25. N. N. Smirnova, Ya. S. Samosudova, A. V. Markin, et al., J. Chem. Thermodyn. 105, 443 (2017).

    Article  CAS  Google Scholar 

  26. N. V. Kuchkina, M. S. Zinatullina, E. S. Serkova, et al., RSC Adv. 5, 99510 (2015).

    Article  CAS  Google Scholar 

  27. N. V. Tsvetkov, A. S. Gubarev, E. V. Lebedeva, et al., Polym. Int. 66, 583 (2017).

    Article  CAS  Google Scholar 

  28. J. Meija, T. B. Coplen, M. Berglund, et al., Pure Appl. Chem. 88, 265 (2016).

    Article  CAS  Google Scholar 

  29. V. M. Malyshev, G. A. Mil’ner, E. L. Sorkin, et al., Prib. Tekh. Eksp., No. 6, 195 (1985).

  30. R. M. Varushchenko, A. I. Druzhinina, and E. L. Sorkin, J. Chem. Thermodyn. 29, 623 (1997).

    Article  CAS  Google Scholar 

  31. R. Sabbah, A. Xu-wu, J. S. Chickos, et al., Thermochim. Acta 331, 93 (1999).

    Article  CAS  Google Scholar 

  32. G. W. H. Höhne, W. F. Hemminger, and H.-J. Flammersheim, Differential Scanning Calorimetry (Springer, Berlin, Heidelberg, 2003).

    Book  Google Scholar 

  33. V. A. Drebushchak, J. Therm. Anal. Calorim. 79, 213 (2005).

    Article  CAS  Google Scholar 

  34. B. Wunderlich and H. Bauer, Heat Capacities of Linear Polymers (Springer, Berlin, 1970).

    Book  Google Scholar 

  35. G. Adam and J. H. Gibbs, J. Chem. Phys. 43, 139 (1965).

    Article  CAS  Google Scholar 

  36. W. Kauzmann, Chem. Rev. 43, 219 (1948).

    Article  CAS  Google Scholar 

  37. A. B. Bestul and S. S. Chang, J. Chem. Phys. 40, 3731 (1964).

    Article  CAS  Google Scholar 

  38. V. B. Lazarev, A. D. Izotov, K. S. Gavrichev, et al., Thermochim. Acta 269–270, 109 (1995).

    Article  Google Scholar 

  39. O. V. Shebershneva, A. D. Izotov, K. S. Gavrichev, and V. B. Lazarev, Inorg. Mater. 32, 28 (1996).

    CAS  Google Scholar 

  40. P. Debye, Ann. Phys. (N.Y.) 344, 789 (1912).

    Article  Google Scholar 

  41. Experimental Thermodynamics, Vol. 1: Calorimetry of Non-Reacting Systems, Ed. by J. P. McCullough and D. W. Scott (Butterworth, London, 1968).

  42. M. W. Chase, Jr., J. Phys. Chem. Ref. Data, Monograph 1–2 (9), 1 (1998).

    Google Scholar 

Download references

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 19-03-00248 and 17-03-00578; and by the RF Ministry of Science and Higher Education (project no. 4.5510.2017/8.9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Smirnova.

Additional information

Translated by K. Utegenov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnova, N.N., Markin, A.V., Sologubov, S.S. et al. Thermodynamic Properties of a Hyperbranched Pyridine-Containing Polyphenylene in the Range of T → 0 to 650 K. Russ. J. Phys. Chem. 94, 261–269 (2020). https://doi.org/10.1134/S0036024420010318

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024420010318

Keywords:

Navigation