Skip to main content
Log in

Viscosity of Aluminum during the Glass Transition Process, According to Molecular Dynamics

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The behavior of the autocorrelation functions of shear stress and the kinematic viscosity coefficient during glass transition processes is studied by means of molecular dynamics using the example of liquid aluminum. A film of liquid metal cooled at a rate of 2 × 1012 K/s is simulated. The dependence of the kinematic viscosity coefficient on temperature is obtained using the Green–Kubo formula. Over long periods of time, the behavior of the autocorrelation functions is approximated by a power-law dependence throughout the range of temperatures. The dependence of the exponent on temperature, which enables us to estimate the temperature of the transition from the liquid to the amorphous state (it agrees with the temperature from the calorimetric criterion), is given. The temperature of the transition to glass is determined. When it is lower than that of the glass transition, features of a solid body appear: shear stress is maintained and transverse oscillations arise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. A. Takeuchi and A. Inoue, Mater. Sci. Eng. 446, 304 (2001).

    Google Scholar 

  2. L. N. Kolotova, G. E. Norman, and V. V. Pisarev, J. Non-Cryst. Solids 429, 98 (2015).

    Article  CAS  Google Scholar 

  3. A. I. Fedorchenko, J. Non-Cryst. Solids 475, 362 (2017).

    CAS  Google Scholar 

  4. L. Zhong, J. Wang, H. Sheng, et al., Nature (London, U.K.) 512, 177 (2014).

    Article  CAS  Google Scholar 

  5. J. Schroers, Nature (London, U.K.) 512, 142 (2014).

    Article  CAS  Google Scholar 

  6. Y. Waseda and H. S. Chen, Phys. Status Solidi A 49, 387 (1978).

    Article  CAS  Google Scholar 

  7. D. K. Belashchenko, Russ. J. Phys. Chem. A 90, 707 (2016).

    Article  CAS  Google Scholar 

  8. V. P. Voloshin and Yu. I. Naberukhin, Zh. Strukt. Khim. 38, 62 (1997).

    CAS  Google Scholar 

  9. L. N. Kolotova, G. E. Norman, and V. V. Pisarev, Russ. J. Phys. Chem. A 89, 802 (2015).

    Article  CAS  Google Scholar 

  10. V. A. Polukhin, E. D. Kurbanova, and N. A. Vatolin, Rasplavy 5, 337 (2017).

    Google Scholar 

  11. H. Jónsson and H. C. Andersen, Phys. Rev. Lett. 60, 2295 (1988).

    Article  PubMed  Google Scholar 

  12. C. A. Angell, Science (Washington, D.C.) 267, 1924 (1995).

    Article  CAS  Google Scholar 

  13. Yu. D. Fomin, V. V. Brazhkin, and V. N. Ryzhov, Phys. Rev. E 86, 011503 (2012).

    Article  CAS  Google Scholar 

  14. Yu. D. Fomin, V. N. Ryzhov, and V. V. Brazhkin, J. Phys.: Condens. Matter 25, 285104 (2013).

    Google Scholar 

  15. R. E. Ryltsev, N. M. Chtchelkatchev, and V. N. Ryzhov, Phys. Rev. Lett. 110, 025701 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. P. Badrinarayanan, W. Zheng, Q. Li, and S. L. Simon, J. Non-Cryst. Solids 353, 2603 (2007).

    Article  CAS  Google Scholar 

  17. J. W. P. Schmelzer and T. V. Tropin, J. Non-Cryst. Solids 407, 170 (2015).

    Article  CAS  Google Scholar 

  18. T. V. Tropin, J. W. Schmelzer, and C. Schick, J. Non-Cryst. Solids 357, 1291 (2011).

    Article  CAS  Google Scholar 

  19. D. S. Sanditov, M. V. Darmaev, and A. A. Mashanov, Zh. Fiz. Khim. 91, 870 (2017).

    Google Scholar 

  20. V. Wessels, A. K. Gangopadhyay, K. K. Sahu, et al., Phys. Rev. B 83, 94116 (2011).

    Article  CAS  Google Scholar 

  21. M. D. Halls, D. Yoshidome, T. J. Mustard, et al., J. Imaging Soc. Jpn. 54, 561 (2015).

    CAS  Google Scholar 

  22. P. N. Patrone, A. Deinstfrey, A. R. Browning, et al., Polymer 87, 246 (2016).

    Article  CAS  Google Scholar 

  23. C. Balbuena, C. Brito, and D. A. Stariolo, J. Phys.: Condens. Matter 26, 155104 (2014).

    Google Scholar 

  24. M. S. Daw and M. I. Baskes, Phys. Rev. B 29, 6443 (1984).

    Article  CAS  Google Scholar 

  25. X. Liu, W. Xu, S. M. Foiles, and J. B. Adams, Appl. Phys. Lett. 72, 1578 (1998).

    Article  CAS  Google Scholar 

  26. D. V. Minakov and P. R. Levashov, Phys. Rev. B 92, 224102 (2015).

    Article  CAS  Google Scholar 

  27. S. Plimpton, J. Comp. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  28. E. M. Kirova and G. E. Norman, J. Phys.: Conf. Ser. 653, 012106 (2015).

    Google Scholar 

  29. N. D. Kondratyuk, A. V. Lankin, G. E. Norman, et al., J. Phys.: Conf. Ser. 653, 012107 (2015).

    Google Scholar 

  30. V. I. Ladyanov, A. L. Beltyukov, S. G. Menshikova, and A. U. Korepanov, Phys. Chem. Liq. 52, 46 (2014).

    Article  CAS  Google Scholar 

  31. Y. Zhang, A. Otani, and E. J. Maginn, J. Chem. Theory Comput. 11, 3537 (2015).

    Article  CAS  PubMed  Google Scholar 

  32. V. V. Pisarev, Russ. J. Phys. Chem. A 88, 1382 (2014).

    Article  CAS  Google Scholar 

  33. K. Trachenko and V. V. Brazhkin, J. Phys.: Condens. Matter 21, 425104 (2009).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was performed on equipment at the supercomputer center of the Joint Institute for High Temperatures; and at the Joint Supercomputer Center of the Russian Academy of Sciences.

This work was supported by the Program for the Support of Leading Scientific Schools of the Russian Federation, grant no. SS-5922.2018.8.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Kirova.

Additional information

Translated by N. Saetova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirova, E.M., Norman, G.E. & Pisarev, V.V. Viscosity of Aluminum during the Glass Transition Process, According to Molecular Dynamics. Russ. J. Phys. Chem. 92, 1865–1869 (2018). https://doi.org/10.1134/S0036024418100126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024418100126

Keywords:

Navigation